Electroluminescent Lamp Driver For 1.5V or 2.2 V to 4.5 V Applications

Features

- Low voltage, single battery operation (1.1VDC $\leq \mathrm{V}_{\text {BATTERY }} \leq 1.7 \mathrm{VDC}$), or (2.2VDC $\leq \mathrm{V}_{\text {BATTERY }} \leq 4.5 \mathrm{VDC}$)
- DC to AC inverter for EL backlit display panels
- Externally adjustable internal oscillator
- Low current standby mode

Applications

- Pagers
- Digital watches
- MP3 players
- Cell Phones
- Backlit LCD displays

Pin Configuration

8-Pin nSOIC/MSOP

General Description

The ZSP4425 is a high voltage outputDC-AC converter that can operate from a single $+1.5 \mathrm{VDC},+3.0 \mathrm{VDC}$, or +2.2 VDC to +4.5 VDC power supply. The ZSP4425 is designed with our proprietary high voltage BiCMOS technology and capable of supplying up to $220 V_{\text {Pp }}$ signals, making it ideal for driving electroluminescent lamps. The device features $1 \mu \mathrm{~A}$ (typical) standby current for use in low power portable products. One external inductor is required to generate the high voltage charge and one external capacitor is used to select the oscillator and lamp frequencies. The ZSP4425 is offered in both 8-pin narrow SOIC and 8-pin MSOP package. For delivery in die form, please consult the factory.

Ordering Information

Part Number	Temperature Range	Package Type
ZSP4425CN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin nSOIC
ZSP4425LCN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin nSOIC Green $*$
ZSP4425CU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin MSOP
ZSP4425LCU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin MSOP Green $*$
ZSP4425CX	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Die in Wafflepack
ZSP4425CW	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Die in Wafer Form
ZSP4425NEB	n/a	nSOIC Eval. Board
ZSP4425UEB	n/a	MSOP Eval. Board

Please contact the factory for pricing, availabiliy on Tape-and-Reels, and Green Package * options

Please contact the factory for EL driver design support and availability of custom-made evaluation demo boards.

See our web site for Application Note AN007 regarding requirements for custom-made evaluation demo boards.

Absolute Maximum Ratings

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

$V_{D D}$ Input Voltages/Currents	
HON (pin 1)	
COIL (pin 3)	100 mA
Lamp Output ... $2300^{\text {P }}$.. $230 V_{P}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Power Dissipation Per Package 8 -pin NSOIC (derate $6.14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ... 500 mW	
IC (derate $4.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	

Storage Considerations

Storage in a low humidity environment is preferred. Large high density plastic packages are moisture sensitive and should be stored in Dry Vapor Barrier Bags. Prior to usage, the parts should remain bagged and stored below $40^{\circ} \mathrm{C}$ and $60 \% \mathrm{RH}$. If the parts are removed from the bag, they should be used within 168 hours or stored in an environment at or below 20% RH. If the above conditions cannot be followed, the parts should be baked for 12 hours at $125^{\circ} \mathrm{C}$ in order to remove moisture prior to soldering. Zywyn ships product in Dry Vapor Barrier Bags with a humidity indicator card and desiccant pack. The humidity indicator should be below 30% RH. The MSL of this product is 3 .
The information furnished by Zywyn has been carefully reviewed for accuracy and reliability. Its application or use, however, is solely the responsibility of the user. No responsibility of the use of this information become part of the terms and conditions of any subsequent sales agreement with Zywyn. Specifications are subject to change without the responsibility for any infringement of patents or other rights of third parties which may result from its use. No license or proprietary rights are granted by implication or otherwise under any patent or patent rights of Zywyn Corporation.

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+1.5 \mathrm{~V}, \mathrm{C}_{\mathrm{LAMP}}=8200 \mathrm{pF}$ with 100Ω series resistance, Coil $=470 \mu \mathrm{H}$ at $4 \Omega, \mathrm{C}_{\mathrm{INT}}=1800 \mathrm{pF}, \mathrm{C}_{\mathrm{OSC}}=180 \mathrm{pF}$, unless otherwise noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$V_{D D}$	Supply Voltage	HON ties to V_{DD}; See Figure 2	1.1	1.5	1.7	V
$\mathrm{l}_{\text {COIL }}$	Supply Current	$\mathrm{V}_{\mathrm{HON}}=\mathrm{V}_{\mathrm{DD}}=+1.5 \mathrm{~V}$		30	60	mA
$\mathrm{V}_{\text {COIL }}$	Coil Voltage		1.1		1.7	V
$\mathrm{V}_{\mathrm{HON}}$	HON Input Voltage LOW: EL off HIGH: EL on	HON ties to V_{DD}	$\begin{gathered} -0.25 \\ 1.1 \end{gathered}$	$\begin{gathered} 0 \\ 1.5 \end{gathered}$	$\begin{gathered} 0.25 \\ 1.7 \end{gathered}$	V
$\mathrm{I}_{\mathrm{HON}}+\mathrm{I}_{\text {DD }}$	$\mathrm{HON}+\mathrm{V}_{\text {DD }}$ Current	Internal pull-down, $\mathrm{V}_{\mathrm{HON}}=\mathrm{V}_{\mathrm{DD}}=+1.5 \mathrm{~V} \text {; See Figure } 2$			3	mA
$\mathrm{I}_{\text {SD }}=\mathrm{I}_{\text {COIL }}$	Shutdown Current	$\mathrm{V}_{\mathrm{HON}}=\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}: \mathrm{V}_{\mathrm{COIL}}=+1.5 \mathrm{~V}$		1	5	$\mu \mathrm{A}$

INDUCTORDRIVE

$\mathrm{f}_{\text {COIL }}=\mathrm{f}_{\text {LAMP }} \times 64$	Coil Frequency			25.6		kHz
	Coil Duty Cycle			90		$\%$
$\mathrm{I}_{\text {PK-COIL }}$	Peak Coil Current	Guaranteed by design			90	mA

ELLAMP OUTPUT

$\mathrm{f}_{\mathrm{LAMP}}$	EL Lamp Frequency	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+1.5 \mathrm{~V}$	250	400	600	Hz
$\mathrm{~V}_{\mathrm{PP}}$	Peak-to-Peak Output Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+1.5 \mathrm{~V}$	120	160		V

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{LAMP}}=4 \mathrm{nF}$ with 100Ω series resistance, Coil $=2 \mathrm{mH}$ at $44 \Omega, \mathrm{C}_{\mathrm{INT}}=470 \mathrm{pF}, \mathrm{C}_{\mathrm{OSC}}=180 \mathrm{pF}$, unless otherwise noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$V_{\text {DD }}$	Supply Voltage		2.2	3.0	4.5	V
$\mathrm{I}_{\text {COIL }}+\mathrm{I}_{\text {DD }}$	Supply Current	$\mathrm{V}_{\mathrm{HON}}=\mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$		28	35	mA
$\mathrm{V}_{\text {coil }}$	Coil Voltage		V_{DD}		4.5	V
$\mathrm{V}_{\mathrm{HON}}$	HON Input Voltage LOW: EL off HIGH: EL on		$\begin{gathered} -0.25 \\ \mathrm{~V}_{\mathrm{DD}}-0.25 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	$\begin{gathered} 0.25 \\ \mathrm{v}_{\mathrm{DD}}+0.25 \end{gathered}$	V
$\mathrm{I}_{\mathrm{HON}}$	HON Current	Internal pull-down, $\mathrm{V}_{\mathrm{HON}}=\mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V} \text {; See Figure } 4$		5	20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SD }}=\mathrm{I}_{\text {COIL }}+\mathrm{I}_{\text {DD }}$	Shutdown Current	$\mathrm{V}_{\mathrm{HON}}=0 \mathrm{~V}$		1	8	$\mu \mathrm{A}$

INDUCTOR DRIVE

$\mathrm{f}_{\text {COIL }}=\mathrm{f}_{\text {LAMP }} \times 64$	Coil Frequency			28.8		kHz
	Coil Duty Cycle			90		$\%$
$\mathrm{I}_{\text {PK-COIL }}$	Peak Coil Current	Guaranteed by design			90	mA

EL LAMP OUTPUT

$\mathrm{f}_{\text {LAMP }}$	EL Lamp Frequency	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$	300	450	600	Hz
$\mathrm{~V}_{\mathrm{PP}}$	Peak-to-Peak Output Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+2.2 \mathrm{~V}$	120	150		V
		$\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$	170	190		V

Bonding Diagram

Notes:

1. Mask number is MS133.
2. Die size is 76×46 mils.
3. Die thickness is 11 mils +/- 1 .
4. Bonding pads are 125×125 microns.
5. Die substrate down-bonds to Vss (GND).

Die Photo

Block Diagram

Figure 1. Block Diagram

Pin Description

Pin Number	Pin Name	Pin Function
1	$\mathrm{C}_{\text {OSC }}$	Capacitor input 1: Connect capacitor from V_{SS} to this pin to set $\mathrm{C}_{\mathrm{OSC}}$ frequency.
2	$\mathrm{V}_{\text {SS }}$	Power supply common: Connect to ground.
3	COIL	Coil input: Connect coil from V_{DD} to this pin.
4	D1	Diode Cathode connection: $\mathrm{C}_{\text {INT }}$ (Integrator capacitor), connect capacitor from this pin to ground to minimize coil glitch energy.
5	EL2	Lamp driver output 2: Connect to EL lamp.
6	EL1	Lamp driver output 1: Connect to EL lamp.
7	$V_{\text {DD }}$	Power supply for driver: Connect to system $\mathrm{V}_{\text {BATTERY }}$ for $2.2 \sim 4.5 \mathrm{~V}$ operation, or tie with HON pin together connects to system $\mathrm{V}_{\text {BATTERY }}$ for 1.5 V operation.
8	HON	Enable for driver operation: high = active; low = inactive.

Circuit Description

The ZSP4425 is made up of three basic circuit elements, an oscillator, coil, and switched H-bridge network. The oscillator provides the device with an on-chip clock source used to control the charge and discharge phases for the coil and lamp. An external capacitor connected between pins 1 and V_{SS} allows the user to vary the oscillator frequency. For a given choice of coil inductance there will be an optimum $\mathrm{C}_{\text {OSC }}$ capacitor value that gives the maximum light output.
The suggested oscillator frequency is 25.6 kHz (C $\mathrm{C}_{\text {OSC }}$ $=180 \mathrm{pF}$). The oscillator output is internally divided to create the control signal for $\mathrm{f}_{\text {LAMP }}$. The oscillator output is internally divided down by 6 flip-flops, a 25.6 kHz signal will be divided into 6 frequency levels: $12.8 \mathrm{kHz}, 6.4 \mathrm{kHz}, 3.2 \mathrm{kHz}$, $1.6 \mathrm{kHz}, 800 \mathrm{~Hz}$, and 400 Hz . The oscillator output (25.6 kHz) is used to drive the coil (see Figure 2) and the sixth flipflop output (300 Hz) is used to drive the lamp. Although the oscillator frequency can be varied to optimize the lamp output, the ratio of $\mathrm{f}_{\text {COIL }} / \mathrm{f}_{\text {LAMP }}$ will always equal 64.
The coil is an external component connected from $\mathrm{V}_{\text {BATTERY }}$ to pin 3 of the ZSP4425. $\mathrm{V}_{\text {BATTERY }}=+1.5 \mathrm{VDC}$ with a $470 \mu \mathrm{H} / 4 \Omega$ coil are typical conditions. Energy is stored in the coil according to the equation $\mathrm{E}_{\mathrm{L}}=1 / 2(\mathrm{LI})^{2}$, where I is the peak current flowing in the inductor. The current in the inductor is time dependent and is set by the "ON" time of the coil switch: $I=\left(V_{L} / L\right) t_{\mathrm{ON}}$, where V_{L} is the voltage across the inductor. At the moment the switch closes, the current in the inductor is zero and the entire supply voltage (minus the $\mathrm{V}_{\mathrm{SAT}}$ of the switch) is across the inductor. The current in the inductor will then ramp up at a linear rate. As the current in the inductor builds up, the voltage across the inductor will decrease due to the resistance of the coil and the "ON" resistance of the switch: $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\text {BATTERY }}-I R_{\mathrm{L}}-\mathrm{V}_{\text {SAT }}$. Since the voltage across the inductor is decreasing, the current ramp-rate also decreases which reduces the current in the coil at the end of $t_{\text {ON }}$ the energy stored in the inductor per coil cycle and therefore the light output. The other important issue is that maximum current (saturation current) in the coil is set by the design and manufacturer of the coil. If the parameters of the application such as $V_{\text {BATTERY }}, L, R_{L}$, or t_{ON} cause the current in the coil to increase beyond its rated $I_{\text {SAT }}$, excessive heat will be generated and the power efficiency will decrease with no additional light output.
The majority of the current goes through the coil and typically less than 2 mA is required for V_{DD} of the ZSP 4425 . V_{DD} can range from +1.5 V , or +2.2 V to +4.5 V ; it is not necessary that $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {BATTERY }}$. Coils are also a function of the core material and winding used - performance variances may be noticeable from different coil suppliers. The Zywyn ZSP4425 is final tested at 1.5 V using a $470 \mu \mathrm{H} / 4 \Omega$ coil from Toko, and a $2 \mathrm{mH} / 44 \Omega$ coil from Matsushita at +3 V . For suggested coil sources, see "Coil Manufacturers."

The $\mathrm{f}_{\mathrm{COIL}}$ signal controls a switch that connects the end of the coil at pin 3 to ground or to open circuit. The $\mathrm{f}_{\text {COIL }}$ signal is a 90% duty cycle signal switching at the oscillator frequency. During the time when the $\mathrm{f}_{\text {COIL }}$ signal is high, the coil is connected from $\mathrm{V}_{\text {BATTERY }}$ to ground and a charged magnetic field is created in the coil. During the low part of $\mathrm{f}_{\mathrm{COIL}}$, the ground connection is switched open, the field collapses and the energy in the inductor is forced to flow toward the lamp. $\mathrm{f}_{\mathrm{COIL}}$ will send 32 of these charge pulses (see Figure 6) lamp, each pulse increases the voltage drop across the lamp in discrete steps. As the voltage potential approaches its maximum, the steps become smaller (see Figure 5).
The H-bridge consists of two proprietary low on-resistance high voltage switches. These two switches control the polarity of how the lamp is charged. The high voltage switches are controlled by the $f_{\text {LAMP }}$ signal which is the oscillator frequency divided by 64 . For a 25.6 kHz oscillator, $\mathrm{f}_{\text {LAMP }}=400 \mathrm{~Hz}$. When the energy from the coil is released, a high voltage spike is created triggering the high voltage switches. The direction of current flow is determined by which high voltage is enabled. One full cycle of the H-bridge will create a voltage step from ground to 80 V (typical) on pins 5 and 6 which are 180 degrees out of phase with each other (see Figure 7). A differential view of the outputs is shown in Figure 8.

Layout Considerations

The ZSP4425 circuit board layout must observe careful analog precautions. For applications with noisy power supply voltages, a $0.1 \mu \mathrm{~F}$ low ESR decoupling capacitor must be connected from $V_{D D}$ to ground. Any high voltage traces should be isolated from any digital clock traces or enable lines. A solid ground plane connection is strongly recommended. All traces to the coil or to the high voltage outputs should be kept as short as possible to minimize capacitive coupling to digital clock lines and to reduce EMI emissions.

Integrator Capacitor

An integrating capacitor must be placed from pin 4 (D1) to ground in order to minimize glitches associated with switching the coil. A capacitor at this point will collect the high voltage spikes and will maximize the peak-to-peak voltage output. High resistance EL lamps will produce more pronounced spiking on the EL output waveform; adding the $\mathrm{C}_{\text {INT }}$ capacitor will minimize the peaking and increase the voltage output at each coil step. The value of the integrator capacitor is application specific typical values can range from 500 pF to $0.1 \mu \mathrm{~F}$. No integrator capacitor or very small values (500pF) will have a minor effect on the output, whereas a $0.1 \mu \mathrm{~F}$ capacitor will cause the output to charge and discharge rapidly creating a square wave output. For most applications an 1800pF integrator capacitor is suitable.

Electroluminescent Technology

What is Electroluminescence?

An EL lamp is basically a strip of plastic that is coated with a phosphorous material which emits light (fluoresces) when a high voltage ($>40 \mathrm{~V}$) which was first applied across it, is removed or reversed. Long periods of DC voltages applied to the material tend to breakdown the material and reduce its lifetime. With these considerations in mind, the ideal signal to drive an EL lamp is a high voltage sine wave. Traditional approaches to achieving this type of waveform included discrete circuits incorporating a transformer, transistors, and several resistors and capacitors. This approach is large and bulky, and cannot be implemented in most hand held equipment. Zywyn now offers low power single chip driver circuits specifically designed to drive small to medium sized electroluminescent panels if all that is required is one external inductor fast recovery diode and two capacitors.
Electroluminescent backlighting is ideal when used with LCD displays, keypads, or other backlit readouts. Its main
use is to illuminate displays in dim to dark conditions for momentary periods of time. EL lamps typically consume less than LEDs or bulbs making them ideal for battery powered products. Also, EL lamps are able to evenly light an area without creating "hot spots" in the display. The amount of light emitted is a function of the voltage applied to the lamp, the frequency at which it is applied, the lamp material used and its size, and lastly, the inductor used. Both voltage and frequency are directly related to light output. In other words, as the voltage or the frequency of the EL output is increased the light output will also increase. The voltage has a much larger impact on light output than the frequency does. For example, an output signal of $168 \mathrm{~V}_{\mathrm{PP}}$ with a frequency of 500 Hz can yield $15 \mathrm{Cd} / \mathrm{m}^{2}$, in the same application a different EL driver could produce $170 \mathrm{~V}_{\mathrm{pp}}$ with a frequency of 450 Hz and can also yield $15 \mathrm{Cd} / \mathrm{m}^{2}$. Variations in peak-to- peak voltage and variations in lamp frequency are to be expected, light output will also vary from device-to-device however typical light output variations are usually not visually noticeable. There are many variables which can be optimized for specific applications.

Typical Application

Figure 2. Typical Application Circuit At 1.5V Operation
For 1.5 V operation, tie HON (pin 8) and V_{DD} (pin 7) together and connect them to either the system power ($\mathrm{V}_{\text {BATTERY }}$), or be driven by the output of a microcontroller capable of sourcing 3 mA of current to power on the internal V_{DD} logic and enable the HON function of the device.

Contact the factory for additional technical or application support.

Test Circuits

NOTE:

NOTE:
Keep high voltage traces short and away from $V_{D D}$ and clock lines

Figure 3. +1.5V Test Circuit

Figure 4. +3.0V Test Circuit

Waveforms

Figure 5. EL Output Voltage in Discrete Steps at EL1 Output

Figure 6. Voltage Pulses Released from the Coil to the EL Driver Circuitry

Figure 7. EL Voltage Waveforms from the EL1 and EL2 Outputs

Figure 8. EL Differential Output Waveform of the EL1 and EL2 Outputs

Typical Performance Characteristics

Coil Manufacturers

Hitachi Metals

Material Trading Division
2101 S. Arlington Heights Road,
Suite 116
Arlington Heights, IL 60005-4142
Phone: 1-800-777-8343 Ext. 12
(847) 364-7200 Ext. 12

Fax: (847) 364-7279
Hitachi Metals Ltd. Europe
Immernannstrasse 14-16, 40210
Dusseldorf, Germany
Contact: Gary Loos
Phone: 49-211-16009-0
Fax: 49-211-16009-29

Hitachi Metals Ltd.

Kishimoto Bldg. 2-1, Marunouchi
2-chome, Chiyoda-Ku, Tokyo,
Japan
Contact: Mr. Noboru Abe
Phone: 3-3284-4936
Fax: 3-3287-1945
Hitachi Metals Ltd. Singapore
78 Shenton Way \#12-01,
Singapore 079120
Contact: Mr. Stan Kaiko
Phone: 222-8077
Fax: 222-5232

Hitachi Metals Ltd. Hong Kong

Room 1107, 11/F., West Wing, Tsim Sha. Tsui Center 66 Mody Road,Tsimshatsui East, Kowloon, Hong Kong
Phone: 2724-4188
Fax: 2311-2095

Murata

2200 Lake Park Drive, Smyrna
Georgia 30080 U.S.A.
Phone: (770) 436-1300
Fax: (770) 436-3030

Murata European

Holbeinstrasse 21-23, 90441
Numberg, Postfachanschrift 90015
Phone: 011-4991166870
Fax: 011-49116687225

Murata Taiwan Electronics

225 Chung-Chin Road, Taichung,
Taiwan, R.O.C.
Phone: 01188642914151
Fax: 01188644252929

Murata Electronics Singapore
200 Yishun Ave. 7, Singapore 2776, Republic of Singapore
Phone: 011657584233
Fax: 011657536181

Murata Hong Kong

Room 709-712 Miramar Tower, 1 Kimberly Road, Tsimshatsui, Kowloon, Hong Kong
Phone: 011-85223763898
Fax: 011-85223755655

Panasonic.

6550 Katella Ave
Cypress, CA 90630-5102
Phone: (714) 373-7366
Fax: (714) 373-7323

Sumida Electric Co., LTD.
5999, New Wilke Road,
Suite \#110
Rolling Meadows, IL,60008 U.S.A.
Phone: (847) 956-0666
Fax: (847) 956-0702

Sumida Electric Co., LTD.
4-8, Kanamachi 2-Chrome, Katsushika-ku, Tokyo 125 Japan
Phone: 03-3607-5111
Fax: 03-3607-5144

Sumida Electric Co., LTD.
Block 15, 996, Bendemeer Road
\#04-05 to 06, Singapore 339944
Republic of Singapore
Phone: 2963388
Fax: 2963390

Sumida Electric Co., LTD.

14 Floor, Eastern Center, 1065
King's Road, Quarry Bay,
Hong Kong
Phone: 28806688
Fax: 25659600

Polarizers/Transflector Manufacturers

Nitto Denko

Yoshi Shinozuka
Bayside Business Park 48500
Fremont, CA. 94538
Phone: 5104455400
Fax: 510 445-5480

Top Polarizer- NPF F1205DU
Bottom - NPF F4225
or (F4205) P3 w/transflector

Transflector Material
Astra Products
Mark Bogin
P.O. Box 479

Baldwin, NJ 11510
Phone (516)-223-7500
Fax (516)-868-2371

EL Lamp Manufacturers

Leading Edge Ind. Inc.
11578 Encore Circle
Minnetonka, MN 55343
Phone 1-800-845-6992

Midori Mark Ltd.

1-5 Komagata 2-Chome
Taita-Ku 111-0043 Japan
Phone: 81-03-3848-2011

NEC Corporation

Yumi Saskai
7-1, Shiba 5 Chome, Minato-ku,
Tokyo 108-01, Japan
Phone: (03) 3798-9572
Fax: (03) 3798-6134

Seiko Precision

Shuzo Abe
1-1, Taihei 4-Chome,
Sumida-ku, Tokyo, 139 Japan
Phone: (03) 5610-7089
Fax: (03) 5610-7177

Gunze Electronics

2113 Wells Branch Parkway
Austin, TX 78728
Phone: (512) 752-1299
Fax: (512) 252-1181

Package Information

Zywyn Corporation

Headquarters and Sales Office

1270 Oakmead Parkway, Suite 201 • Sunnyvale, CA 94085 • Tel: (408) 733-3225 • Fax: (408) 733-3206
Email: sales@zywyn.com • www.zywyn.com
Zywyn Corporation reserves the right to make changes to any products described herein. Zywyn does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.
© 2005 Zywyn Corporation

