100Mbps / 155Mbps / 622Mbps

Large Active Area and High Speed Silicon Photodiodes

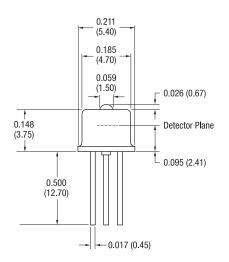
OSI Optoelectronics's family of large active area and high speed silicon detector series are designed to reliably support short-haul data communications applications. All exhibit low dark current and low capacitance at 3.3V bias. The base unit comes in a 3 pin TO-46 package with micro lens cap or AR coated flat window. Standard fiber optic receptacles (FC, ST, SC and SMA) allow easy integration of OSI Optoelectronics's fast silicon photodiodes into systems.

APPLICATIONS

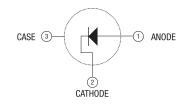
- High Speed Optical Communications
- Single/Multi-Mode Fiber Optic Large Diameter Sensing Area Receiver
- Fast Ethernet/FDDI • SONET/SDH, ATM
- High Responsivity

Silicon Photodiodes

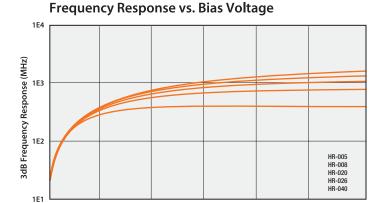
- Low Capacitance @ 3.3V Bias
- Low Cost


FEATURES

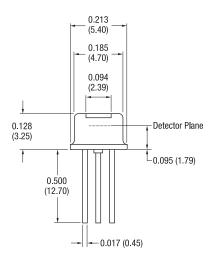
Absolute Maximum Ratings											
PARAMETERS	SYMBOL	MIN	МАХ	UNITS							
Storage Temperature	T _{stg}	-55	+125	°C							
Operating Temperature	T _{op}	-40	+75	°C							
Soldering Temperature	T _{sld}		+260	°C							


Electro-Optic	Electro-Optical Characteristics T _A =23°C															23°C											
PARAMETERS	SYMBOL	CONDITIONS		FCI-HR005			FCI-HR008			FCI-HR020		FCI-HR026			FCI-HR040			UNITE									
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS								
Active Area Diameter	AA_{ϕ}				127			203			508			660			991		μm								
Responsivity (Flat Window Package)	R_λ	λ=850nm			0.50			0.50			0.50			0.50			0.50		A/W								
Dark Current	I _d	V _R = 5.0V			0.02	0.80		0.03	0.80		0.06	1.00		0.09	1.50		0.30	2.00	nA								
Capacitance	Cj	$V_{R} = 3.3V$ $V_{R} = 5.0V$			0.9			0.9			2.1			2.8			5.2		-5								
					0.80			0.80			1.8			2.6			4.9		pF								
Rise Time	t _r				÷					10% to 90%	V _R = 3.3V		0.75			0.75			1.00			1.10			1.20		
		$R_L = 50\Omega$ λ=850nm	V _R = 5.0V		0.60			0.60			0.80			0.90			1.00		ns								
Max. Reverse Voltage						20			20			20			20			20	V								
NEP					5.95E -15			6.19E -15			8.76E -15			1.07E -14			1.96E -14		W/√Hz								

Large Active Area and High Speed Silicon Photodiodes

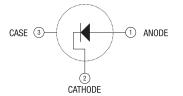

Typical Capacitance vs. Reverse Bias

Pin Circle Diameter = 0.100 (2.54)



10

15


5

0

Reverse Voltage (V)

Pin Circle Diameter = 0.100 (2.54)

Notes:

- All units in inches (mm).
- All tolerances: 0.005 (0.125).
- Please specify when ordering the flat window or lens cap devices.
- The flat window devices have broadband AR coatings centered at 850nm.
- The thickness of the flat window=0.008 (0.21).