

HIGH POWER SPDT SWITCH GaAs MMIC

■ GENERAL DESCRIPTION

The NJG1814MD7 is a GaAs SPDT switch MMIC suitable for WLAN, LTE and 4G applications.

The NJG1814MD7 features very high isolation, low insertion loss, and excellent linearity performance at high frequency up to 6GHz. In addition, its high speed switching time is available for WLAN application. Integrated ESD protection device on each port achieves excellent ESD robustness. No DC blocking capacitors are required for all RF ports unless DC is biased externally.

The small and thin EQFN14-D7 package is adopted.

■ PACKAGE OUTLINE

NJG1814MD7

■ APPLICATIONS

IEEE 802.11a/b/g/n/ac applications LTE and LTE-U applications General Purpose Switching applications

■ FEATURES

₱ P_{-0.1dB}

 Low voltage logic control 1.35V to 5.0V

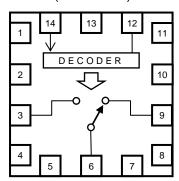
42dB typ. @f=0.7GHz, P_{IN}=+27dBm High Isolation

35dB typ. @f=2.0GHz, P_{IN}=+27dBm 34dB typ. @f=2.7GHz, P_{IN}=+27dBm 33dB typ. @f=5.85GHz, P_{IN}=+27dBm 0.35dB typ. @f=0.7GHz, P_{IN}=+27dBm 0.38dB typ. @f=2.0GHz, P_{IN}=+27dBm

0.40dB typ. @f=2.7GHz, P_{IN}=+27dBm 0.45dB typ. @f=5.85GHz, P_{IN}=+27dBm

+33dBm min.

200ns typ.


 High speed switching time Ultra small & thin package EQFN14-D7 (Package size: 1.6 x 1.6 x 0.397mm)

RoHS compliant and Halogen Free, MSL1

■ PIN CONFIGURATION

Low insertion loss

(TOP VIEW)

Pin connection

Exposed PAD: GND

1. GND 8. GND 2. NC(GND) 9. P1 3. P2 10. GND 4. GND 11. GND 5. GND 12. VDD 6. PC 13. NC(GND) 7. GND 14. VCTL

■ TRUTH TABLE

"H"=VCTL(H), "L"=VCTL(L)

	TE(II)3 - FOIE(E)
VCTL	Path
Н	PC-P1
L	PC-P2

NOTE: Please note that any information on this datasheet will be subject to change.

■ ABSOLUTE MAXIMUM RATINGS

(General conditions: $T_a=+25$ °C, $Z_s=Z_l=50\Omega$)

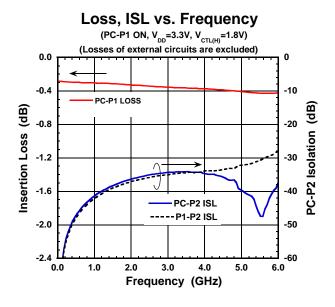
PARAMETER	SYMBOL	CONDITIONS	RATINGS	UNITS
RF Input Power	P _{IN}	V _{DD} =3.3V	+33.5	dBm
Supply Voltage	V_{DD}		5.0	V
Control Voltage	V _{CTL}		5.0	V
Power Dissipation	P_D	Four-layer FR4 PCB with through-hole (76.2x114.3mm), Tj=150°C	1300	mW
Operating Temp.	T_{opr}		-40 to +105	°C
Storage Temp.	T_{stg}		-55 to +150	°C

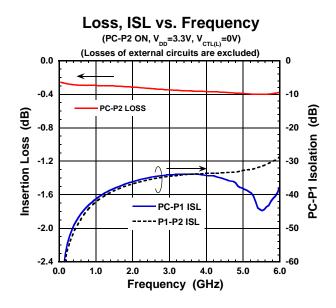
■ ELECTRICAL CHARACTERISTICS 1 (DC)

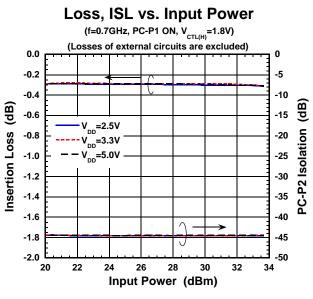
(General conditions: $T_a=+25$ °C, $Z_s=Z_l=50\Omega$)

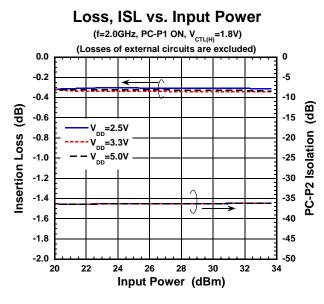
PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DD}		2.5	3.3	5.0	V
Operating Current	I _{DD}	No RF input, V _{DD} =3.3V	-	200	400	μА
Control Voltage (LOW)	V _{CTL(L)}		0	-	0.45	V
Control Voltage (HIGH)	V _{CTL(H)}		1.35	1.8	5.0	V
Control Current	I _{CTL}	V _{CTL(H)} =1.8V	-	4	10	μА

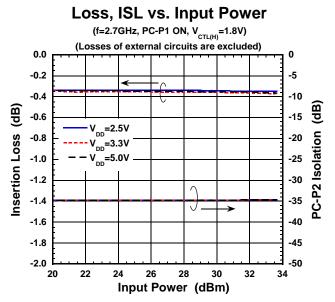
■ ELECTRICAL CHARACTERISTICS 2 (RF) (General conditions: T₂=+25°C, Z₂=Z₁=50Ω, V₂=3.3V, V₂

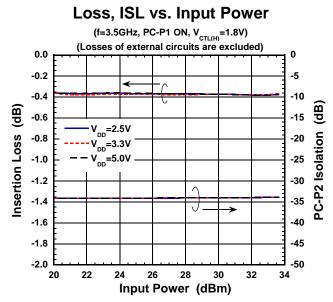

(General conditions: T_a =+25°C, Z_s = Z_l =50 Ω , V_{DD} =3.3 V , $V_{CTL(L)}$ =0 V , $V_{CTL(H)}$ =1.8 V , with application circuit)							
PARAMETERS	SYMBOL	CONDI	MIN	TYP	MAX	UNITS	
Insertion Loss 1	LOSS1	f=0.7GHz, P _{IN} =+27dBm		-	0.35	0.50	dB
Insertion Loss 2	LOSS2	f=2.0GHz, P _{IN} =	+27dBm	-	0.38	0.53	dB
Insertion Loss 3	LOSS3	f=2.7GHz, P _{IN} =	+27dBm	-	0.40	0.60	dB
Insertion Loss 4	LOSS4	f=3.5GHz, P _{IN} =	+27dBm	-	0.42	0.62	dB
Insertion Loss 5	LOSS5	f=5.85GHz, P _{IN}	=+27dBm	-	0.45	0.65	dB
Isolation 1	ISL1	f=0.7GHz, P _{IN} =	+27dBm	39	42	-	dB
Isolation 2	ISL2	f=2.0GHz, P _{IN} =	+27dBm	32	35	-	dB
Isolation 3	ISL3	f=2.7GHz, P _{IN} =	f=2.7GHz, P _{IN} =+27dBm		34	-	dB
Isolation 4	ISL4	f=3.5GHz, P _{IN} =+27dBm		30	33	-	dB
la eletion F	101.5	f=5.85GHz	PC- Pn*1	30	33	1	dB
Isolation 5	ISL5	P _{IN} =+27dBm			27	-	dB
Input Power at 0.1dB Compression Point	P _{-0.1dB}	f=5.85GHz		+33	-	-	dBm
2nd Harmonics	2fo	f=5.18GHz, 5.85GHz, P _{IN} =+27dBm		-	-	-70	dBc
3rd Harmonics	3fo	f=5.18GHz, 5.85GHz, P _{IN} =+27dBm		-	-	-70	dBc
4th Harmonics	4fo	f=5.18GHz, 5.85GHz, P _{IN} =+27dBm		-	-	-70	dBc
Input 2nd order intercept point	IIP2	f=2.48+2.69GHz, f _{meas} =5.17GHz, P _{IN} =+10dBm each		+100	-	-	dBm
Input 3rd order intercept point	IIP3	f=1.71+2.40GHz, f _{meas} =5.82GHz, P _{IN} =+10dBm each		+60	-	-	dBm
VSWR1	VSWR1	Ì	On-state ports, f=2.7GHz		1.1	1.5	
VSWR2	VSWR2	On-state ports, f=5.85GHz		-	1.1	1.5	
Switching time	T _{SW}	50% V _{CTL} to 10/90% RF		-	200	400	ns

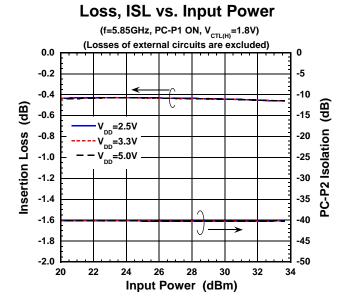

^{*1:} Pn=P1, P2.

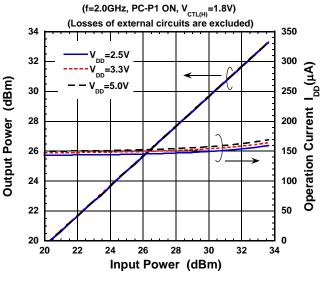

^{*2:} Pm=P1, P2. Pn=P1, P2. m≠n

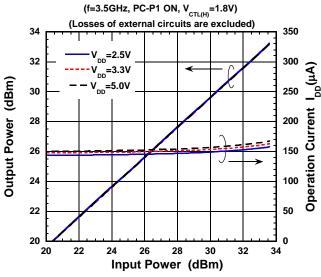

■ TERMINAL INFORMATION

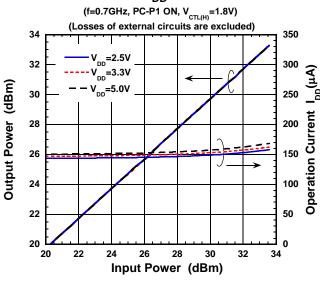

No.	SYMBOL	DESCRIPTION	
1	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.	
2	NC(GND)	No connected terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.	
3	P2	RF transmitting/receiving port. No DC blocking capacitor is required for this port unless DC is biased externally.	
4	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.	
5	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.	
6	PC	RF transmitting/receiving port. No DC blocking capacitor is required for this port unless DC is biased externally. Please connect an inductor with GND terminal for ESD protection.	
7	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.	
8	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.	
9	P1	RF transmitting/receiving port. No DC blocking capacitor is required for this port unless DC is biased externally.	
10	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.	
11	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.	
12	VDD	Positive voltage supply terminal. The positive voltage (+2.5 to +5V) has to be supplied. Please connect a bypass capacitor with GND terminal for excellent RF performance.	
13	NC(GND)	No connected terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.	
14	VCTL	Control signal input terminal. This terminal is set to High-Level (+1.35 to +5.0V) or Low-Level (0 to +0.45V).	
Exposed Pad	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.	

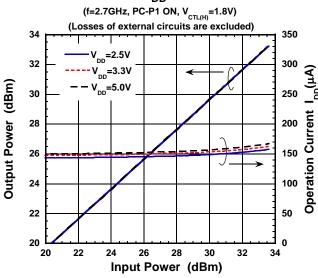




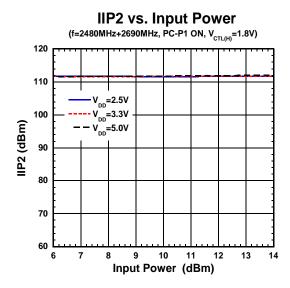


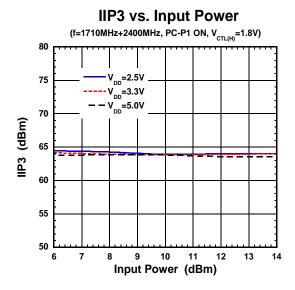

New Japan Radio Co., Ltd.

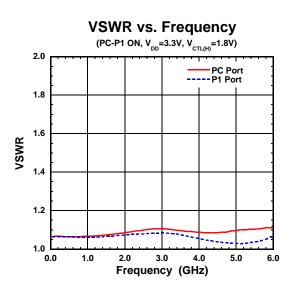

Output Power, I_{DD} vs. Input Power

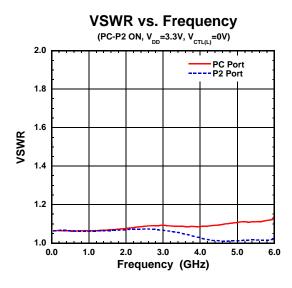

Output Power, I_{DD} vs. Input Power

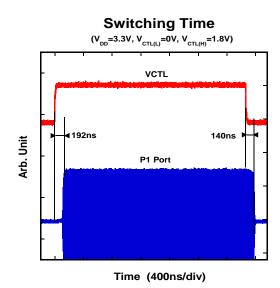

Output Power, I_{DD} vs. Input Power

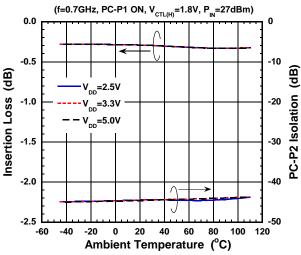

Output Power, I_{DD} vs. Input Power

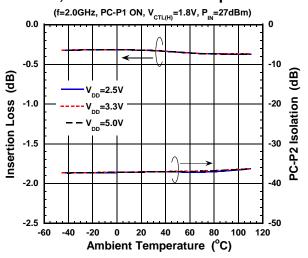


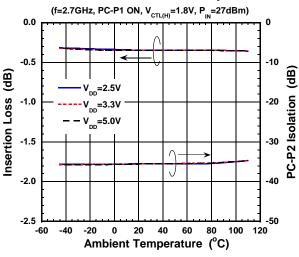

Output Power, I_{DD} vs. Input Power

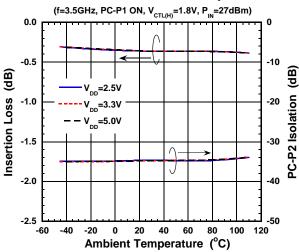


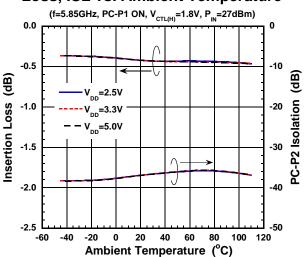

New Japan Radio Co., Ltd.

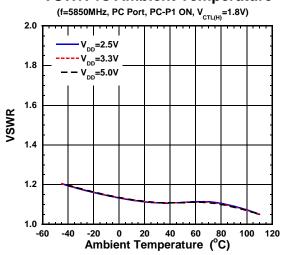


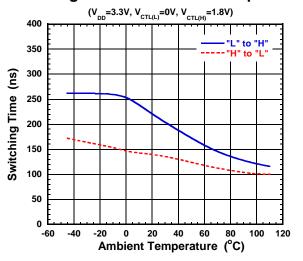


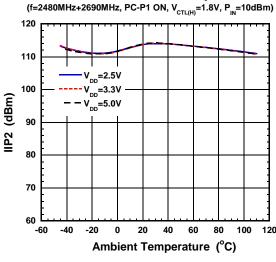

Loss, ISL vs. Ambient Temperature

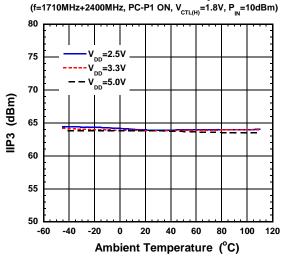

Loss, ISL vs. Ambient Temperature

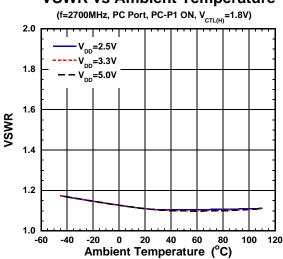

Loss, ISL vs. Ambient Temperature


Loss, ISL vs. Ambient Temperature

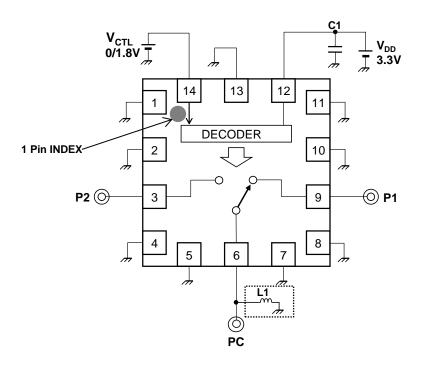

Loss, ISL vs. Ambient Temperature


VSWR vs Ambient Temperature


Switching Time vs. Ambient Temperature


IIP2 vs. Ambient Temperature

IIP3 vs. Ambient Temperature

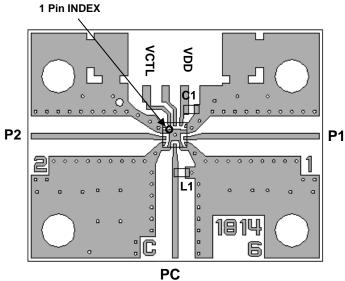


VSWR vs Ambient Temperature

■ APPLICATION CIRCUIT

(TOP VIEW)

Note:


- [1] No DC blocking capacitors are required on all RF ports, unless DC is biased externally.
- [2] The inductor L1 is optional in order to achieve enhancing ESD protection level.
- [3] L1 is also recommended in order to keep the DC bias level of each RF port at 0V level tightly.

■ PARTS LIST

No.	Parameters	Note	
C1	1000pF	MURATA (GRM15)	
L1	56nH	TAIYO-YUDEN (HK1005)	

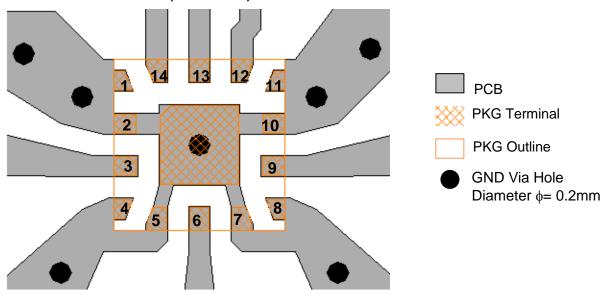
■ PCB LAYOUT

(TOP VIEW)

* L1 is optional

PCB size: 19.4 x 15.0 mm PCB: FR-4, t=0.2mm

Micro strip line width: 0.38mm


Losses of PCB and connectors, Ta=+25°C

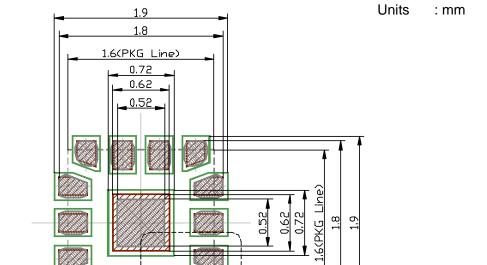
Frequency (GHz)	Loss (dB)
0.7	0.18
2.0	0.31
2.7	0.35
3.5	0.42
5.85	0.66

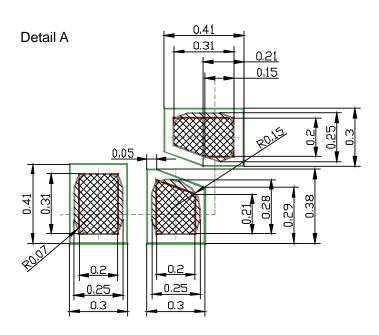
■ PRECAUTIONS

- [1] No DC blocking capacitors are required at each RF port normally. When the other device is biased at certain voltage and connected to the NJG1814MD7, a DC blocking capacitor is required between the device and the switch IC. This is because the each RF port of NJG1814MD7 is biased at 0V (GND).
- [2] For avoiding the degradation of RF performance, the bypass capacitor (C1) should be placed as close as possible to VDD terminal.
- [3] For good RF performance, all GND terminals are must be connected to PCB ground plane of substrate, and through holes for ground should be placed the IC near.

■ PCB LAYOUT GUIDELINE (EQFN14-D7)

■ RECOMMENDED FOOTPRINT PATTERN (EQFN14-D7 PACKAGE Reference)


:Land


PKG: 1.6mm x 1.6mm

:Mask (Open area) *Metal mask thickness : 100µm

Pin pitch: 0.4mm

:Resist(Open area)

■ PACKAGE OUTLINE (EQFN14-D7)

Cautions on using this product

This product contains Gallium-Arsenide (GaAs) which is a harmful material.

- Do NOT eat or put into mouth.
- Do NOT dispose in fire or break up this product.
- Do NOT chemically make gas or powder with this product.
- To waste this product, please obey the relating law of your country.

This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.

[CAUTION]

The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.