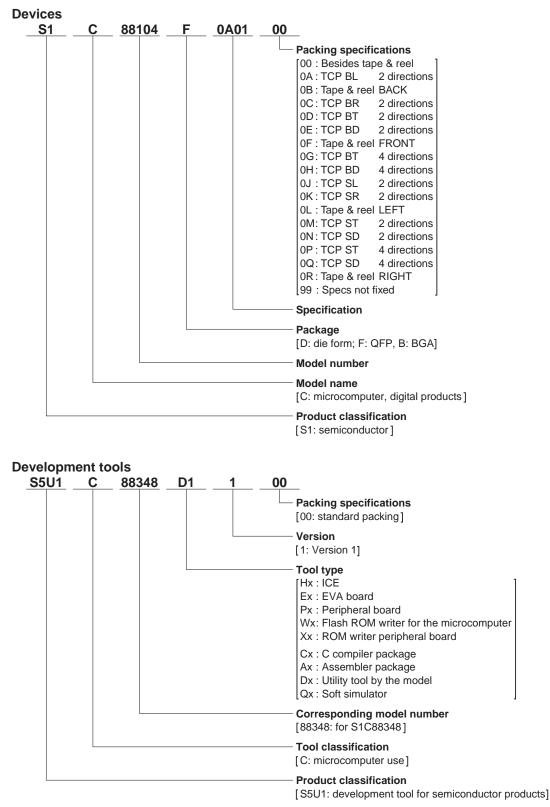



# CMOS 8-BIT SINGLE CHIP MICROCOMPUTER **S1C88655** Technical Manual S1C88655 Technical Hardware




**SEIKO EPSON CORPORATION** 

#### NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

### Configuration of product number



# Contents

| 1 | INT | RODUCTION                                                                  | . 1  |  |  |  |  |  |  |  |  |  |
|---|-----|----------------------------------------------------------------------------|------|--|--|--|--|--|--|--|--|--|
|   | 1.1 | Features                                                                   | 1    |  |  |  |  |  |  |  |  |  |
|   | 1.2 | Block Diagram                                                              | 2    |  |  |  |  |  |  |  |  |  |
|   | 1.3 | Pad Layout                                                                 | 2    |  |  |  |  |  |  |  |  |  |
|   |     | 1.3.1 Diagram of pad layout                                                |      |  |  |  |  |  |  |  |  |  |
|   |     | 1.3.2 Pad coordinates                                                      |      |  |  |  |  |  |  |  |  |  |
|   | 1.4 | 1.3.3 Pad description                                                      |      |  |  |  |  |  |  |  |  |  |
|   | 1.4 | Mask Option                                                                |      |  |  |  |  |  |  |  |  |  |
| 2 | CPU | J                                                                          | . 7  |  |  |  |  |  |  |  |  |  |
|   | 2.1 | Core CPU                                                                   | 7    |  |  |  |  |  |  |  |  |  |
|   |     | 2.1.1 CPU model                                                            |      |  |  |  |  |  |  |  |  |  |
|   |     | 2.1.2 CC (customized condition flag)                                       |      |  |  |  |  |  |  |  |  |  |
|   | 2.2 | MCU Mode and MPU Mode<br>2.2.1 MCU mode                                    |      |  |  |  |  |  |  |  |  |  |
|   |     | 2.2.1 MC0 mode                                                             |      |  |  |  |  |  |  |  |  |  |
|   |     | 2.2.3 Mask option                                                          | 7    |  |  |  |  |  |  |  |  |  |
| 3 | ME  | MORY MAP                                                                   | . 8  |  |  |  |  |  |  |  |  |  |
|   | 3.1 | MCU Single Chip Mode                                                       | 8    |  |  |  |  |  |  |  |  |  |
|   | 3.2 | MCU Expansion Mode                                                         | 8    |  |  |  |  |  |  |  |  |  |
|   | 3.3 | MPU Expansion Mode                                                         | 8    |  |  |  |  |  |  |  |  |  |
|   | 3.4 | Internal Memory                                                            |      |  |  |  |  |  |  |  |  |  |
|   |     | 3.4.1 Program ROM                                                          |      |  |  |  |  |  |  |  |  |  |
|   |     | 3.4.2 RAM<br>3.4.3 Display data RAM                                        |      |  |  |  |  |  |  |  |  |  |
|   |     | 3.4.4 Font data ROM                                                        |      |  |  |  |  |  |  |  |  |  |
|   | 3.5 | I/O Memory                                                                 | 9    |  |  |  |  |  |  |  |  |  |
| 4 | PO  | POWER SUPPLY                                                               |      |  |  |  |  |  |  |  |  |  |
|   | 4.1 | Operating Voltage                                                          | .27  |  |  |  |  |  |  |  |  |  |
|   | 4.2 | Internal Power Supply Circuit                                              | .27  |  |  |  |  |  |  |  |  |  |
|   |     | 4.2.1 VDI voltage generator                                                |      |  |  |  |  |  |  |  |  |  |
|   |     | 4.2.2 Supply voltage booster circuit<br>4.2.3 Vc5 voltage generator        |      |  |  |  |  |  |  |  |  |  |
|   |     | 4.2.4 VCI-4 voltage generator                                              |      |  |  |  |  |  |  |  |  |  |
|   |     | 4.2.5 LCD drive power supply circuit control procedure                     | . 29 |  |  |  |  |  |  |  |  |  |
|   | 4.3 | Details of Control Registers                                               | . 30 |  |  |  |  |  |  |  |  |  |
|   | 4.4 | Precautions                                                                | .31  |  |  |  |  |  |  |  |  |  |
| 5 | INI | TIAL RESET                                                                 | 32   |  |  |  |  |  |  |  |  |  |
|   | 5.1 | Configuration of Initial Reset Circuit                                     | . 32 |  |  |  |  |  |  |  |  |  |
|   |     | 5.1.1 RESET terminal                                                       |      |  |  |  |  |  |  |  |  |  |
|   |     | 5.1.2 Reset voltage detector (RVD)<br>5.1.3 Watchdog timer overflow signal |      |  |  |  |  |  |  |  |  |  |
|   |     | 5.1.4 Initial reset sequence                                               |      |  |  |  |  |  |  |  |  |  |
|   | 5.2 | Initial Settings After Initial Reset                                       |      |  |  |  |  |  |  |  |  |  |
|   |     |                                                                            |      |  |  |  |  |  |  |  |  |  |

| 6  | SYS          | TEM CONTROLLER AND BUS CONTROL                           | 35 |
|----|--------------|----------------------------------------------------------|----|
|    | 6.1          | Configuration of External Bus                            | 35 |
|    | 6.2          | Bus Mode and CPU Mode                                    | 36 |
|    |              | 6.2.1 Bus mode<br>6.2.2 CPU mode                         |    |
|    | 6.3          | Address Decoder ( $\overline{CE}$ ) Settings             |    |
|    | 6.4          | WAIT State Settings                                      |    |
|    | 6.5          | Setting Bus Authority Release Request Signal             |    |
|    | 6.6          | Stack Page Setting                                       |    |
|    | 6.7          | Details of Control Registers                             |    |
|    | 6.8          | Precautions                                              |    |
| 7  | INT          | ERRUPT AND STANDBY STATUS                                | 44 |
|    | 7.1          | Interrupt Generation Conditions                          | 44 |
|    | 7.2          | Interrupt Factor Flag                                    |    |
|    | 7.3          | Interrupt Enable Register                                |    |
|    | 7.4          | Interrupt Priority Register and Interrupt Priority Level |    |
|    | 7.5          | Exception Processing Vectors                             | 49 |
|    | 7.6          | Details of Control Registers                             | 50 |
|    | 7.7          | Precautions                                              | 54 |
| 8  | <i>osc</i>   | CILLATION CIRCUITS                                       | 55 |
|    | 8.1          | Configuration of Oscillation Circuits                    | 55 |
|    | 8.2          | Mask Option                                              | 55 |
|    | 8.3          | OSC3 Oscillation Circuit                                 | 56 |
|    | 8.4          | OSC1 Oscillation Circuit                                 | 56 |
|    | 8.5          | Switching the CPU Clock                                  | 57 |
|    | 8.6          | Clock Output (FOUT)                                      |    |
|    | 8.7          | Details of Control Registers                             | 59 |
|    | 8.8          | Precautions                                              | 60 |
| 9  | OUT          | TPUT PORTS (R PORTS)                                     | 61 |
|    | 9.1          | Configuration of Output Ports                            | 61 |
|    | 9.2          | High Impedance Control                                   | 61 |
|    | 9.3          | DC Output                                                | 61 |
|    | 9.4          | Details of Control Registers                             | 62 |
| 10 | <i>I/O I</i> | PORTS (P PORTS)                                          | 64 |
|    | 10.1         | Configuration of I/O Ports                               | 64 |
|    | 10.2         | Mask Option                                              | 65 |
|    | 10.3         | Input/Output Mode                                        | 66 |
|    | 10.4         | Pull-up Control                                          | 66 |
|    | 10.5         | Interrupt Function                                       | 67 |
|    | 10.6         | Details of Control Registers                             | 69 |
|    | 10.7         | Precautions                                              | 72 |

| 11 | SER          | IAL INTERFACE                                         | 73    |
|----|--------------|-------------------------------------------------------|-------|
|    | 11.1         | Configuration of Serial Interface                     | 73    |
|    | 11.2         | Switching Terminal Functions                          | 73    |
|    | 11.3         | Transfer Modes                                        | 74    |
|    | 11.4         | Clock Source                                          | 75    |
|    | 11.5         | Transmit/Receive Control                              | 76    |
|    | 11.6         | Operation of Clock Synchronous Transfer               | 77    |
|    | 11.7         | Operation of Asynchronous Transfer                    | 80    |
|    | 11.8         | Interrupt Function                                    | 84    |
|    | 11.9         | Details of Control Registers                          | 86    |
|    | 11.10        | Precautions                                           | 91    |
| 12 | CLO          | OCK TIMER                                             | 92    |
|    | 12.1         | Configuration of Clock Timer                          | 92    |
|    | 12.2         | Interrupt Function                                    | 92    |
|    | 12.3         | Details of Control Registers                          | 94    |
|    | 12.4         | Precautions                                           | 95    |
| 13 | PRO          | OGRAMMABLE TIMER                                      | 96    |
|    | 13.1         | Configuration of Programmable Timer                   | 96    |
|    | 13.2         | Operation Mode                                        |       |
|    | 13.3         | Setting of Input Clock                                | 99    |
|    | 13.4         | Operation and Control of Timer                        | 99    |
|    | 13.5         | Interrupt Function                                    | 101   |
|    | 13.6         | Setting TOUT Outputs                                  | 103   |
|    | 13.7         | Setting Transfer Rate of Serial Interface             | 104   |
|    | 13.8         | Setting Clock for LCD Driver Display Timing Generator | 104   |
|    | 13.9         | Details of Control Register                           | 105   |
|    | 13.10        | Precautions                                           | 115   |
| 14 | WAT          | TCHDOG TIMER                                          | 116   |
|    | 14.1         | Configuration of Watchdog Timer                       | 116   |
|    | 14.2         | Mask Option                                           | 116   |
|    | 14.3         | Details of Control Register                           | 117   |
|    | 14.4         | Precautions                                           | 117   |
| 15 | LCD          | DRIVER                                                | 118   |
|    | 15.1         | Configuration of LCD Driver                           | 118   |
|    | 15.2         | LCD Power Supply                                      | 118   |
|    | 15.3         | Display Timing Generator                              | 119   |
|    |              | 15.3.1 Generating frame signal                        |       |
|    | 15.4         | 15.3.2 CL, FR signal outputs<br>Display Data RAM      |       |
|    | 15.4<br>15.5 | Display Data RAM<br>Display Control                   |       |
|    | 15.5<br>15.6 | Display Control<br>Details of Control Registers       |       |
|    | 15.0         | Precautions                                           |       |
|    | 10.7         |                                                       | 1 4 / |

| 16         | SUP        | PLY VOLTAGE DETECTION (SVD) CIRCUIT                                             | 128 |
|------------|------------|---------------------------------------------------------------------------------|-----|
|            | 16.1       | Configuration of SVD Circuit                                                    |     |
|            | 16.2       | SVD Operation                                                                   |     |
|            | 16.3       | Details of Control Register                                                     |     |
|            | 16.4       | Precautions                                                                     |     |
| 17         | SUN        | IMARY OF NOTES                                                                  | 130 |
|            | 17.1       | Notes for Low Current Consumption                                               | 130 |
|            | 17.2       | Precautions on Mounting                                                         |     |
| 18         | BAS        | IC EXTERNAL WIRING DIAGRAM                                                      | 133 |
| 19         | ELE        | CCTRICAL CHARACTERISTICS                                                        | 134 |
|            | 19.1       | Absolute Maximum Rating                                                         |     |
|            | 19.2       | Recommended Operating Conditions                                                |     |
|            | 19.3       | DC Characteristics                                                              |     |
|            | 19.4       | Analog Circuit Characteristics                                                  |     |
|            | 19.5       | Power Current Consumption                                                       |     |
|            | 19.6       | AC Characteristics                                                              |     |
|            | 19.7       | Oscillation Characteristics                                                     | 143 |
|            | 19.8       | Characteristics Curves (reference value)                                        | 144 |
| 20         | PAC        | EXAGE FOR TEST SAMPLES                                                          | 151 |
| APF        | PEND       | IX A PERIPHERAL CIRCUIT BOARD FOR S1C88655                                      |     |
|            |            | $(S5U1C88000P1 + S5U1C88655P2 + S5U1C88655T1) \dots$                            | 153 |
|            | A.1        | Names and Functions of Each Part                                                | 153 |
|            | A.2        | Installation                                                                    | 156 |
|            |            | A.2.1 Installing S5U1C88655P2 to S5U1C88000P1                                   |     |
|            | A.3        | A.2.2 Installing into the ICE (S5U1C88000H5)<br>Connecting to the Target System |     |
|            | A.3<br>A.4 | Downloading Circuit Data to the S5U1C88000P1                                    |     |
|            | A.4<br>A.5 | Precautions                                                                     |     |
|            | л.)        | A.5.1 Precaution for operation                                                  |     |
|            |            | A.5.2 Differences from actual IC                                                |     |
|            | A.6        | Product Specifications                                                          |     |
|            |            | A.6.1 S5U1C88000P1 specifications                                               |     |
|            |            | A.6.2 S5U1C88655P2 specifications<br>A.6.3 S5U1C88655T1 specifications          |     |
| APF        | PEND       | IX B USING FONT DATA                                                            |     |
| ΔPI        | PEND       | IX C TCM                                                                        | 162 |
| <b>m</b> 1 |            |                                                                                 | 103 |

# 1 INTRODUCTION

The S1C88655 is an 8-bit microcomputer for portable equipment with an LCD display that has a built-in LCD controller/driver and a font data ROM.

The LCD controller/driver contains an LCD drive power supply circuit and can drive a maximum of  $128 \times 64$ -dot LCD panel. The S1C88655 has a built-in large-capacity ROM that can store various font data\*.

This microcomputer features low-voltage (1.8 V) and high-speed (8.2 MHz) operations as well as low-current consumption, for instance, 2  $\mu$ A in standby mode (HALT mode with 32-kHz crystal oscillation).

The S1C88655 is suitable for display modules such as PDAs and data banks that require a generalpurpose LCD driver in conventional systems as well as portable CD/MD players and solid audio equipment with low-power and a small-footprint.

#### \* Fonts supported

- 1)  $12 \times 12$ -dot Japanese font
  - (JIS level-1 and level-2, other characters)
- 12 × 12-dot Korean font (KSX1001)

Please contact Seiko Epson for more information on the fonts provided.

## 1.1 Features

Table 1.1.1 lists the features of the S1C88655.

|                                 | Table 1.1.1 Main features                                                                                                     |  |  |  |  |  |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Core CPU                        | S1C88 (MODEL3) CMOS 8-bit core CPU                                                                                            |  |  |  |  |  |  |  |  |  |
| Main (OSC3) oscillation circuit | Crystal oscillation circuit/ceramic oscillation circuit 8.2 MHz (Max.), or CR oscillation circuit 2.2 MHz (Max.)*1            |  |  |  |  |  |  |  |  |  |
| Sub (OSC1) oscillation circuit  | rystal oscillation circuit 32.768 kHz (Typ.), or CR oscillation circuit 200 kHz (Max.)*1                                      |  |  |  |  |  |  |  |  |  |
| Instruction set                 | 608 types (usable for multiplication and division instructions)                                                               |  |  |  |  |  |  |  |  |  |
| Min. instruction execution time |                                                                                                                               |  |  |  |  |  |  |  |  |  |
| Internal ROM capacity           |                                                                                                                               |  |  |  |  |  |  |  |  |  |
| 1 5                             | 512K bytes/font data ROM Can be used for a program and data ROM when no font data is stored.                                  |  |  |  |  |  |  |  |  |  |
| Internal RAM capacity           | 8K bytes/RAM                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                                 | 2K bytes/display data RAM (8192 bits per screen × 2)                                                                          |  |  |  |  |  |  |  |  |  |
| Bus line                        | Address bus: 20 bits                                                                                                          |  |  |  |  |  |  |  |  |  |
|                                 | Data bus: 8 bits                                                                                                              |  |  |  |  |  |  |  |  |  |
|                                 | $\overline{CE}$ signal: 4 bits (1MB addressing range $\times$ 4)                                                              |  |  |  |  |  |  |  |  |  |
|                                 | WR signal: 1 bit                                                                                                              |  |  |  |  |  |  |  |  |  |
|                                 | RD signal: 1 bit                                                                                                              |  |  |  |  |  |  |  |  |  |
|                                 | These pins can be used as general-purpose ports when not used for the bus.                                                    |  |  |  |  |  |  |  |  |  |
| Output port                     | 0–3 bits (when the external bus is used)                                                                                      |  |  |  |  |  |  |  |  |  |
|                                 | 26 bits (when the external bus is not used)                                                                                   |  |  |  |  |  |  |  |  |  |
| I/O port                        | 16 bits (when the external bus is used)     CMOS or Schmitt inputs*1                                                          |  |  |  |  |  |  |  |  |  |
|                                 | 24 bits (when the external bus is not used) With or without pull-up resistors*1                                               |  |  |  |  |  |  |  |  |  |
| Serial interface                | 2 channels Clock synchronous system or asynchronous system is selectable.                                                     |  |  |  |  |  |  |  |  |  |
| Timer                           | Programmable timer: 4 channels of 16-bit (8-bit $\times$ 2) timers                                                            |  |  |  |  |  |  |  |  |  |
|                                 | (with PWM waveform, SIF and LCD driver clock output functions)                                                                |  |  |  |  |  |  |  |  |  |
|                                 | Clock timer: 1 channel                                                                                                        |  |  |  |  |  |  |  |  |  |
| LCD driver                      | Dot matrix type, 128 segments $\times$ 64 commons                                                                             |  |  |  |  |  |  |  |  |  |
|                                 | Built-in LCD power supply circuit that multiplies the source voltage by a factor of 2, 3, 4, or 5                             |  |  |  |  |  |  |  |  |  |
| Watchdog timer                  | Overflow cycle (1 to 4 seconds) and output signal (NMI or reset) are selectable*1                                             |  |  |  |  |  |  |  |  |  |
| Supply voltage detection        | 13 values programmable (1.8–2.7 V)                                                                                            |  |  |  |  |  |  |  |  |  |
| (SVD) circuit                   |                                                                                                                               |  |  |  |  |  |  |  |  |  |
| Reset voltage detection         | Supply voltage level reset (1.6 V, power-on reset function) with enable/disable option*1                                      |  |  |  |  |  |  |  |  |  |
| (RVD) circuit                   |                                                                                                                               |  |  |  |  |  |  |  |  |  |
| Interrupt                       | External interrupt: Input interrupt (with noise rejector) 1 system (8 types)                                                  |  |  |  |  |  |  |  |  |  |
|                                 | Internal interrupt: Timer interrupt 5 systems (20 types)                                                                      |  |  |  |  |  |  |  |  |  |
|                                 | Serial interface interrupt 2 systems (6 types)                                                                                |  |  |  |  |  |  |  |  |  |
| Supply voltage                  | 1.8–3.6 V (internal voltage VDI = 1.8 V)                                                                                      |  |  |  |  |  |  |  |  |  |
| Current consumption             | SLEEP mode: 0.7 µA (Typ.)                                                                                                     |  |  |  |  |  |  |  |  |  |
|                                 | HALT mode: $2 \mu A$ (Typ.) $32 \text{ kHz OSC1 crystal, LCD OFF}$                                                            |  |  |  |  |  |  |  |  |  |
|                                 | 7 μA (Typ.) 32 kHz OSC1 CR, LCD OFF                                                                                           |  |  |  |  |  |  |  |  |  |
|                                 | Run mode: $5 \mu A$ (Typ.) 32 kHz OSC1 crystal, LCD OFF                                                                       |  |  |  |  |  |  |  |  |  |
|                                 | 350 μA (Typ.) 2 MHz OSC3 CR, LCD OFF                                                                                          |  |  |  |  |  |  |  |  |  |
|                                 | 800 μA (Typ.) 8 MHz OSC3 ceramic, LCD OFF                                                                                     |  |  |  |  |  |  |  |  |  |
|                                 | RVD circuit operating current: $1.5 \mu\text{A}$ (Typ.) VDD = $3.6 \text{V}$                                                  |  |  |  |  |  |  |  |  |  |
|                                 | SVD circuit operating current: $5 \mu A$ (Typ.) VDD = 3.6 V                                                                   |  |  |  |  |  |  |  |  |  |
|                                 | LCD driver circuit operating current: $50 \mu\text{A}$ (Typ.) VDD = $3.0 \text{V}$ , OSC1 = $32 \text{kHz}$ , triple boosted, |  |  |  |  |  |  |  |  |  |
|                                 | $V_{C5} = 8 V$ , white screen displayed                                                                                       |  |  |  |  |  |  |  |  |  |
|                                 | 120 $\mu$ A (Typ.) VDD = 3.0 V, OSC1 = 32 kHz, triple boosted,                                                                |  |  |  |  |  |  |  |  |  |
|                                 | $V_{C5} = 8 V$ , checker pattern displayed                                                                                    |  |  |  |  |  |  |  |  |  |
| Supply form                     | AU-bump chip or TCM*2                                                                                                         |  |  |  |  |  |  |  |  |  |

Table 1.1.1 Main features

\*1 Selectable by mask option

<sup>\*2</sup> TCM (Tape Carrier Module): FPC (Flexible Printed Circuit) modules that include peripheral circuit parts as well as the IC main unit

## 1.2 Block Diagram

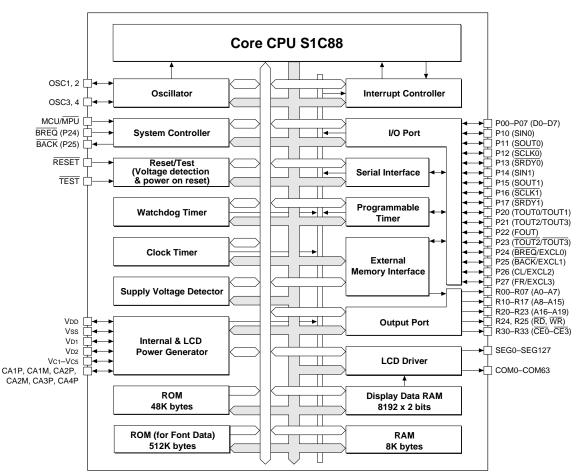
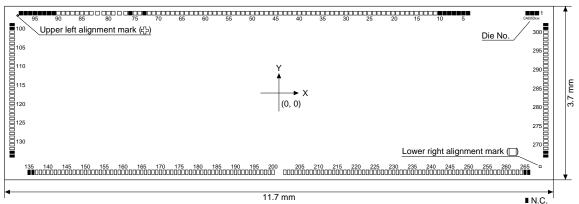




Fig. 1.2.1 S1C88655 block diagram

## 1.3 Pad Layout

### 1.3.1 Diagram of pad layout



#### Chip size) 11.7 $\times$ 3.7 mm $\,$ Chip thickness) 725 $\mu m$

Pad size) No. 1–98: 82 × 82  $\mu$ m, No. 99–134: 100 × 54  $\mu$ m, No. 135–266: 54 × 100  $\mu$ m, No. 267–302: 100 × 54  $\mu$ m Bump pitch) No. 1–98: 100  $\mu$ m (Min.), No. 99–302: 80  $\mu$ m (Min.) Bump height) 22.5  $\mu$ m Alignment mark coordinates) Upper left corner: (-5560, 1660), Lower right corner: (5569, -1569)

Fig. 1.3.1.1 Pad layout
EPSON

## 1.3.2 Pad coordinates

| No.<br>1<br>2<br>3<br>4 | Pad<br>Name                       | Coord            |            |            | Pad              | Coord            | linates        |            | Pad            | Coord      | linator          |            |                  |                |                  |
|-------------------------|-----------------------------------|------------------|------------|------------|------------------|------------------|----------------|------------|----------------|------------|------------------|------------|------------------|----------------|------------------|
| 1<br>2<br>3             |                                   |                  |            | N.L.       |                  |                  |                |            |                |            |                  |            | Pad              |                | inates           |
| 23                      |                                   | X<br>5,502       | Y<br>1,702 | No.<br>77  | Name<br>CA3P     | X<br>-3,268      | Y<br>1,702     | No.<br>153 | Name<br>SEG16  | -3,886     | Y<br>-1,689      | No.<br>229 | Name<br>SEG92    | X<br>2,366     | Y<br>-1,689      |
| 3                       | (N.C.)<br>(N.C.)                  | 5,502            | 1,702      | 78         | CA3P<br>CA1M     | -3,268           | 1,702          | 153        | SEG16<br>SEG17 | -3,886     | -1,689           | 229        | SEG92<br>SEG93   | 2,366          | -1,689           |
|                         | (N.C.)                            | 5,302            | 1,702      | 79         | CA1M<br>CA1P     | -3,535           | 1,702          | 154        | SEG17<br>SEG18 | -3,726     | -1,689           | 230        | SEG95<br>SEG94   | 2,440          | -1,689           |
|                         | (N.C.)                            | 4,032            | 1,702      | 80         | VD2              | -3,635           | 1,702          | 155        | SEG18          | -3,646     | -1,689           | 231        | SEG95            | 2,520          | -1,689           |
| 5                       | (N.C.)                            | 3,932            | 1,702      | 81         | CA4P             | -3,735           | 1,702          | 150        | SEG19<br>SEG20 | -3,566     | -1,689           | 232        | SEG95<br>SEG96   | 2,686          | -1,689           |
| 6                       | (N.C.)                            | 3,832            | 1,702      | 82         | CA2M             | -3,869           | 1,702          | 158        | SEG20          | -3,486     | -1,689           | 234        | SEG97            | 2,766          | -1,689           |
| 7                       | (N.C.)                            | 3,732            | 1,702      | 83         | CA2P             | -4,002           | 1,702          | 159        | SEG22          | -3,406     | -1,689           | 235        | SEG98            | 2,846          | -1,689           |
| 8                       | (N.C.)                            | 3,632            | 1,702      | 84         | VD2              | -4,102           | 1,702          | 160        | SEG23          | -3,326     | -1,689           | 236        | SEG99            | 2,926          | -1,689           |
| 9                       | (N.C.)                            | 3,532            | 1,702      | 85         | Vss              | -4,202           | 1,702          | 161        | SEG24          | -3,246     | -1,689           | 237        | SEG100           | 3,006          | -1,689           |
| 10                      | (N.C.)                            | 3,432            | 1,702      | 86         | VC1              | -4,302           | 1,702          | 162        | SEG25          | -3,166     | -1,689           | 238        | SEG101           | 3,086          | -1,689           |
| 11                      | VDD                               | 3,332            | 1,702      | 87         | VC2              | -4,402           | 1,702          | 163        | SEG26          | -3,086     | -1,689           | 239        | SEG102           | 3,166          | -1,689           |
| 12                      | OSC2                              | 3,232            | 1,702      | 88         | VC3              | -4,502           | 1,702          | 164        | SEG27          | -3,006     | -1,689           | 240        | SEG103           | 3,246          | -1,689           |
| 13                      | OSC1                              | 3,132            | 1,702      | 89         | VC4              | -4,602           | 1,702          | 165        | SEG28          | -2,926     | -1,689           | 241        | SEG104           | 3,326          | -1,689           |
| 14                      | Vss                               | 3,032            | 1,702      | 90         | VC5              | -4,702           | 1,702          | 166        | SEG29          | -2,846     | -1,689           | 242        | SEG105           | 3,406          | -1,689           |
| 15                      | VD1                               | 2,932            | 1,702      | 91         | (N.C.)           | -4,802           | 1,702          | 167        | SEG30          | -2,766     | -1,689           | 243        | SEG106           | 3,486          | -1,689           |
| 16                      | OSC4                              | 2,832            | 1,702      | 92         | (N.C.)           | -4,902           | 1,702          | 168        | SEG31          | -2,686     | -1,689           | 244        | SEG107           | 3,566          | -1,689           |
| 17                      | OSC3                              | 2,732            | 1,702      | 93         | (N.C.)           | -5,002           | 1,702          | 169        | SEG32          | -2,606     | -1,689           | 245        | SEG108           | 3,646          | -1,689           |
| 18                      | TEST                              | 2,632            | 1,702      | 94         | (N.C.)           | -5,102           | 1,702          | 170        | SEG33          | -2,526     | -1,689           | 246        | SEG109           | 3,726          | -1,689           |
| 19                      | MCU/MPU                           | 2,532            | 1,702      | 95         | (N.C.)           | -5,202           | 1,702          | 171        | SEG34          | -2,446     | -1,689           | 247        | SEG110           | 3,806          | -1,689           |
| 20                      | RESET                             | 2,432            | 1,702      | 96         | (N.C.)           | -5,302           | 1,702          | 172        | SEG35          | -2,366     | -1,689           | 248        | SEG111           | 3,886          | -1,689           |
| 21                      | Vss                               | 2,332            | 1,702      | 97         | (N.C.)           | -5,402           | 1,702          | 173        | SEG36          | -2,286     | -1,689           | 249        | SEG112           | 3,966          | -1,689           |
| 22                      | P27/FR/EXCL3                      | 2,232            | 1,702      | 98         | (N.C.)           | -5,502           | 1,702          | 174        | SEG37          | -2,206     | -1,689           | 250        | SEG113           | 4,046          | -1,689           |
| 23                      | P26/CL/EXCL2                      | 2,132            | 1,702      | 99         | (N.C.)           | -5,689           | 1,458          | 175        | SEG38          | -2,126     | -1,689           | 251        | SEG114<br>SEG115 | 4,126          | -1,689           |
| 24                      | P25/BACK/EXCL1                    | 2,032            | 1,702      | 100        | (N.C.)           | -5,689           | 1,378          | 176        | SEG39          |            | -1,689           | 252        |                  | 4,206          | -1,689           |
| 25<br>26                | P24/BREQ/EXCL0<br>P23/TOUT2/TOUT3 | 1,932<br>1,832   | 1,702      | 101        | COM31<br>COM30   | -5,689<br>-5,689 | 1,298<br>1,218 | 177<br>178 | SEG40<br>SEG41 | -1,966     | -1,689<br>-1,689 | 253<br>254 | SEG116<br>SEG117 | 4,286          | -1,689<br>-1,689 |
| 20                      | P23/10012/10013                   | 1,832            | 1,702      | 102        | COM30<br>COM29   | -5,689           | 1,218          | 178        | SEG41<br>SEG42 | -1,880     | -1,689           | 254        | SEG117<br>SEG118 | 4,300          | -1,689           |
| 27                      | P21/TOUT2/TOUT3                   | 1,732            | 1,702      | 103        | COM29<br>COM28   | -5,689           | 1,158          | 179        | SEG42<br>SEG43 | -1,726     | -1,689           | 255        | SEG118<br>SEG119 | 4,440          | -1,689           |
| 28                      | P20/TOUT0/TOUT1                   | 1,532            | 1,702      | 104        | COM28<br>COM27   | -5,689           | 978            | 180        | SEG43<br>SEG44 | -1,646     | -1,689           | 257        | SEG120           | 4,520          | -1,689           |
| 30                      | P17/SRDY1                         | 1,332            | 1,702      | 105        | COM27<br>COM26   | -5,689           | 898            | 182        | SEG45          | -1,566     | -1,689           | 258        | SEG120<br>SEG121 | 4,686          | -1,689           |
| 31                      | P16/SCLK1                         | 1,332            | 1,702      | 100        | COM25            | -5,689           | 818            | 183        | SEG46          | -1,486     | -1,689           | 259        | SEG121<br>SEG122 | 4,766          | -1,689           |
| 32                      | P15/SOUT1                         | 1,232            | 1,702      | 107        | COM25<br>COM24   | -5,689           | 738            | 184        | SEG40<br>SEG47 | -1,406     | -1,689           | 260        | SEG122<br>SEG123 | 4,846          | -1,689           |
| 33                      | P14/SIN1                          | 1,132            | 1,702      | 109        | COM23            | -5,689           | 658            | 185        | SEG48          | -1,326     | -1,689           | 261        | SEG123           | 4,926          | -1,689           |
| 34                      | P13/SRDY0                         | 1,032            | 1,702      | 110        | COM22            | -5,689           | 578            | 186        | SEG49          | -1,246     | -1,689           | 262        | SEG125           | 5,006          | -1,689           |
| 35                      | P12/SCLK0                         | 932              | 1,702      | 111        | COM21            | -5,689           | 498            | 187        | SEG50          | -1,166     | -1,689           | 263        | SEG126           | 5,086          | -1,689           |
| 36                      | P11/SOUT0                         | 832              | 1,702      | 112        | COM20            | -5,689           | 418            | 188        | SEG51          | -1,086     | -1,689           | 264        | SEG127           | 5,166          | -1,689           |
| 37                      | P10/SIN0                          | 732              | 1,702      | 113        | COM19            | -5,689           | 338            | 189        | SEG52          | -1,006     | -1,689           | 265        | (N.C.)           | 5,246          | -1,689           |
| 38                      | VDD                               | 632              | 1,702      | 114        | COM18            | -5,689           | 258            | 190        | SEG53          | -926       | -1,689           | 266        | (N.C.)           | 5,326          | -1,689           |
| 39                      | P07/D7                            | 532              | 1,702      | 115        | COM17            | -5,689           | 178            | 191        | SEG54          | -846       | -1,689           | 267        | (N.C.)           | 5,689          | -1,342           |
| 40                      | P06/D6                            | 432              | 1,702      | 116        | COM16            | -5,689           | 98             | 192        | SEG55          | -766       | -1,689           | 268        | (N.C.)           | 5,689          | -1,262           |
| 41                      | P05/D5                            | 332              | 1,702      | 117        | COM15            | -5,689           | 18             | 193        | SEG56          | -686       | -1,689           | 269        | COM32            | 5,689          | -1,182           |
| 42                      | P04/D4                            | 232              | 1,702      | 118        | COM14            | -5,689           | -62            | 194        | SEG57          | -606       | -1,689           | 270        | COM33            | 5,689          | -1,102           |
| 43                      | P03/D3                            | 132              | 1,702      | 119        | COM13            | -5,689           | -142           | 195        | SEG58          | -526       | -1,689           | 271        | COM34            | 5,689          | -1,022           |
| 44                      | P02/D2                            | 32               | 1,702      | 120        | COM12            | -5,689           | -222           | 196        | SEG59          | -446       | -1,689           | 272        | COM35            | 5,689          | -942             |
| 45                      | P01/D1                            | -68              | 1,702      | 121        | COM11            | -5,689           | -302           | 197        | SEG60          | -366       | -1,689           | 273        | COM36            | 5,689          | -862             |
| 46                      | P00/D0                            | -168             | 1,702      | 122        | COM10            | -5,689           | -382           | 198        | SEG61          | -286       | -1,689           | 274        | COM37            | 5,689          | -782             |
| 47                      | R00/A0                            | -268             | 1,702      | 123        | COM9             | -5,689           | -462           | 199        | SEG62          | -206       | -1,689           | 275        | COM38            | 5,689          | -702             |
| 48                      | R01/A1                            | -368             | 1,702      | 124        | COM8             | -5,689           | -542           | 200        | SEG63          | -126       | -1,689           | 276        | COM39            | 5,689          | -622             |
| 49                      | R02/A2                            | -468             | 1,702      | 125        | COM7             | -5,689           | -622           | 201        | SEG64          | 126        | -1,689           | 277        | COM40            | 5,689          | -542             |
| 50                      | R03/A3                            | -568             | 1,702      | 126        | COM6             | -5,689           | -702           | 202        | SEG65          | 206        | -1,689           | 278        | COM41            | 5,689          | -462             |
| 51                      | R04/A4                            | -668             | 1,702      | 127        | COM5             | -5,689           | -782           | 203        | SEG66          | 286        | -1,689           | 279        | COM42            | 5,689          | -382             |
| 52                      | R05/A5                            | -768             | 1,702      | 128        | COM4             | -5,689           | -862           | 204        | SEG67          | 366        | -1,689           | 280        | COM43            | 5,689          | -302             |
| 53                      | R06/A6                            | -868             | 1,702      | 129        | COM3             | -5,689           | -942           | 205        | SEG68          | 446        | -1,689           | 281        | COM44            | 5,689          | -222             |
| 54                      | R07/A7                            | -968             | 1,702      | 130        | COM2<br>COM1     | -5,689           | -1,022         | 206        | SEG69          | 526        | -1,689           | 282        | COM45            | 5,689          | -142             |
| 55                      | R10/A8<br>R11/A9                  | -1,068           | 1,702      | 131        |                  | -5,689<br>-5,689 | -1,102         | 207        | SEG70          | 606        | -1,689           | 283        | COM46<br>COM47   | 5,689          | -62              |
| 56<br>57                | R11/A9<br>R12/A10                 | -1,168<br>-1,268 | 1,702      | 132<br>133 | COM0<br>(N.C.)   | -5,689           | -1,182         | 208<br>209 | SEG71<br>SEG72 | 686<br>766 | -1,689<br>-1,689 | 284<br>285 | COM47<br>COM48   | 5,689<br>5,689 | 18<br>98         |
| 57                      | R12/A10<br>R13/A11                | -1,268           | 1,702      | 133        | (N.C.)<br>(N.C.) | -5,689           | -1,262         | 209        | SEG72<br>SEG73 | 846        | -1,689           | 285        | COM48<br>COM49   | 5,689          | 98<br>178        |
| 58<br>59                | R13/A11<br>R14/A12                | -1,368           | 1,702      | 134        | (N.C.)           | -5,326           | -1,542         | 210        | SEG73<br>SEG74 | 926        | -1,689           | 280        | COM49<br>COM50   | 5,689          | 258              |
| 59<br>60                | R14/A12<br>R15/A13                | -1,468           | 1,702      | 135        | (N.C.)           | -5,326           | -1,689         | 211 212    | SEG74<br>SEG75 | 1,006      | -1,689           | 287        | COM50<br>COM51   | 5,689          | 338              |
| 61                      | R15/A13<br>R16/A14                | -1,668           | 1,702      | 130        | SEG0             | -5,166           | -1,689         | 212        | SEG76          | 1,000      | -1,689           | 289        | COM51<br>COM52   | 5,689          | 418              |
| 62                      | R10/A14<br>R17/A15                | -1,768           | 1,702      | 137        | SEG1             | -5,086           | -1,689         | 213        | SEG77          | 1,166      | -1,689           | 209        | COM52<br>COM53   | 5,689          | 418              |
| 63                      | R1//A15<br>R20/A16                | -1,868           | 1,702      | 138        | SEG2             | -5,006           | -1,689         | 214        | SEG78          | 1,100      | -1,689           | 290        | COM55<br>COM54   | 5,689          | 578              |
| 64                      | R20/A10<br>R21/A17                | -1,968           | 1,702      | 140        | SEG3             | -4,926           | -1,689         | 215        | SEG79          | 1,326      | -1,689           | 292        | COM54<br>COM55   | 5,689          | 658              |
| 65                      | R22/A18                           | -2,068           | 1,702      | 141        | SEG4             | -4,846           | -1,689         | 217        | SEG80          | 1,320      | -1,689           | 293        | COM55<br>COM56   | 5,689          | 738              |
| 66                      | R23/A19                           | -2,168           | 1,702      | 142        | SEG5             | -4,766           | -1,689         | 218        | SEG81          | 1,486      | -1,689           | 294        | COM57            | 5,689          | 818              |
| 67                      | R24/RD                            | -2,268           | 1,702      | 143        | SEG6             | -4,686           | -1,689         | 219        | SEG82          | 1,566      | -1,689           | 295        | COM58            | 5,689          | 898              |
| 68                      | R25/WR                            | -2,368           | 1,702      | 144        | SEG7             | -4,606           | -1,689         | 220        | SEG83          | 1,646      | -1,689           | 296        | COM59            | 5,689          | 978              |
| 69                      | R30/CE0                           | -2,468           | 1,702      | 145        | SEG8             | -4,526           | -1,689         | 221        | SEG84          | 1,726      | -1,689           | 297        | COM60            | 5,689          | 1,058            |
| 70                      | R31/CE1                           | -2,568           | 1,702      | 146        | SEG9             | -4,446           | -1,689         | 222        | SEG85          | 1,806      | -1,689           | 298        | COM61            | 5,689          | 1,138            |
| 71                      | R32/CE2                           | -2,668           | 1,702      | 147        | SEG10            | -4,366           | -1,689         | 223        | SEG86          | 1,886      | -1,689           | 299        | COM62            | 5,689          | 1,218            |
| 72                      | R33/CE3                           | -2,768           | 1,702      | 148        | SEG11            | -4,286           | -1,689         | 224        | SEG87          | 1,966      | -1,689           | 300        | COM63            | 5,689          | 1,298            |
| 73                      | (N.C.)                            | -2,868           | 1,702      | 149        | SEG12            | -4,206           | -1,689         | 225        | SEG88          | 2,046      | -1,689           | 301        | (N.C.)           | 5,689          | 1,378            |
| 74                      | VDD                               | -2,968           | 1,702      | 150        | SEG13            | -4,126           | -1,689         | 226        | SEG89          | 2,126      | -1,689           | 302        | (N.C.)           | 5,689          | 1,458            |
|                         | Vss                               | -3,068           | 1,702      | 151        | SEG14            | -4,046           | -1,689         | 227        | SEG90          | 2,206      | -1,689           | -          | -                | -              | -                |
| 75                      |                                   |                  |            |            | SEG15            | -3,966           | -1,689         | 228        | SEG91          | 2,286      | -1,689           | -          | -                | _              | -                |

## 1.3.3 Pad description

| Table 1.3.3.1 Pad description |                  |        |              |                                                                                                           |  |  |  |  |  |
|-------------------------------|------------------|--------|--------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Pad name                      | Pad No.          | In/Out | Init*        | Function                                                                                                  |  |  |  |  |  |
| VDD                           | 11, 38, 74       | -      | -            | Power supply (+) terminal                                                                                 |  |  |  |  |  |
| Vss                           | 14, 21, 75, 85   | -      | -            | Power supply (GND) terminal                                                                               |  |  |  |  |  |
| V <sub>D1</sub>               | 15               | -      | -            | Internal logic and oscillation system voltage regulator output terminal                                   |  |  |  |  |  |
| VD2                           | 80, 84           | -      | -            | LCD circuit power voltage booster output terminal                                                         |  |  |  |  |  |
| VC1–VC5                       | 86–90            | -      | -            | LCD drive voltage output terminals                                                                        |  |  |  |  |  |
| CA1P, CA1M,                   | 79, 78,          | -      | -            | LCD voltage booster capacitor connection terminals                                                        |  |  |  |  |  |
| CA2P, CA2M,                   | 83, 82,          |        |              |                                                                                                           |  |  |  |  |  |
| CA3P, CA4P                    | 77, 81           |        |              |                                                                                                           |  |  |  |  |  |
| OSC1                          | 13               | Ι      | Ι            | OSC1 oscillation input terminal (select crystal/CR oscillation by mask option)                            |  |  |  |  |  |
| OSC2                          | 12               | 0      | 0            | OSC1 oscillation output terminal                                                                          |  |  |  |  |  |
| OSC3                          | 17               | Ι      | Ι            | OSC3 oscillation input terminal (select crystal/ceramic/CR oscillation by mask option)                    |  |  |  |  |  |
| OSC4                          | 16               | 0      | 0            | OSC3 oscillation output terminal                                                                          |  |  |  |  |  |
| MCU/MPU                       | 19               | Ι      | I (Pull-up)  | MCU/MPU mode setup terminal                                                                               |  |  |  |  |  |
| R00-R07/A0-A7                 | 47-54            | 0      | O (H)        | Output terminals (R00–R07) or address bus (A0–A7)                                                         |  |  |  |  |  |
| R10-R17/A8-A15                | 55-62            | 0      | O (H)        | Output terminals (R10–R17) or address bus (A8–A15)                                                        |  |  |  |  |  |
| R20-R23/A16-A19               | 63–66            | 0      | O (H)        | Output terminals (R20–R23) or address bus (A16–A19)                                                       |  |  |  |  |  |
| R24/RD                        | 67               | 0      | O (H)        | Output terminal (R24) or read signal output terminal ( $\overline{RD}$ )                                  |  |  |  |  |  |
| R25/WR                        | 68               | 0      | O (H)        | Output terminal (R25) or write signal output terminal ( $\overline{WR}$ )                                 |  |  |  |  |  |
| R30-R33/CE0-CE3               | 69–72            | 0      | O (H)        | Output terminals (R30–R33) or chip enable signal output terminals ( $\overline{CE0}$ – $\overline{CE3}$ ) |  |  |  |  |  |
| P00-P07/D0-D7                 | 46-39            | I/O    | I (Pull-up)  | I/O terminals (P00–P07) or data bus (D0–D7)                                                               |  |  |  |  |  |
| P10/SIN0                      | 37               | I/O    | I (Pull-up)  | I/O terminal (P10) or serial I/F Ch. 0 data input terminal (SIN0)                                         |  |  |  |  |  |
| P11/SOUT0                     | 36               | I/O    | I (Pull-up)  | I/O terminal (P11) or serial I/F Ch. 0 data output terminal (SOUT0)                                       |  |  |  |  |  |
| P12/SCLK0                     | 35               | I/O    | I (Pull-up)  | I/O terminal (P12) or serial I/F Ch. 0 clock I/O terminal (SCLK0)                                         |  |  |  |  |  |
| P13/SRDY0                     | 34               | I/O    | I (Pull-up)  | I/O terminal (P13) or serial I/F Ch. 0 ready signal output terminal (SRDY0)                               |  |  |  |  |  |
| P14/SIN1                      | 33               | I/O    | I (Pull-up)  | I/O terminal (P14) or serial I/F Ch. 1 data input terminal (SIN1)                                         |  |  |  |  |  |
| P15/SOUT1                     | 32               | I/O    | I (Pull-up)  | I/O terminal (P15) or serial I/F Ch. 1 data output terminal (SOUT1)                                       |  |  |  |  |  |
| P16/SCLK1                     | 31               | I/O    | I (Pull-up)  | I/O terminal (P16) or serial I/F Ch. 1 clock I/O terminal (SCLK1)                                         |  |  |  |  |  |
| P17/SRDY1                     | 30               | I/O    | I (Pull-up)  | I/O terminal (P17) or serial I/F Ch. 1 ready signal output terminal (SRDY1)                               |  |  |  |  |  |
| P20/TOUT0/TOUT1               | 29               | I/O    | I (Pull-up)  | I/O terminal (P20)                                                                                        |  |  |  |  |  |
|                               |                  |        | · • • • •    | or programmable timer underflow signal output terminal (TOUT0/TOUT1)                                      |  |  |  |  |  |
| P21/TOUT2/TOUT3               | 28               | I/O    | I (Pull-up)  | I/O terminal (P21)                                                                                        |  |  |  |  |  |
|                               |                  |        | · • • • •    | or programmable timer underflow signal output terminal (TOUT2/TOUT3)                                      |  |  |  |  |  |
| P22/FOUT                      | 27               | I/O    | I (Pull-up)  | I/O terminal (P22) or clock output terminal (FOUT)                                                        |  |  |  |  |  |
| P23/TOUT2/TOUT3               | 26               | I/O    | I (Pull-up)  | I/O terminal (P23)                                                                                        |  |  |  |  |  |
|                               |                  |        | · • • • •    | or programmable timer underflow inverted signal output terminal (TOUT2/TOUT3)                             |  |  |  |  |  |
| P24/BREO/EXCL0                | 25               | I/O    | I (Pull-up)  | I/O terminal (P24), bus request signal input terminal (BREQ)                                              |  |  |  |  |  |
|                               |                  |        | · • • • •    | or programmable timer external clock input terminal (EXCL0)                                               |  |  |  |  |  |
| P25/BACK/EXCL1                | 24               | I/O    | I (Pull-up)  | I/O terminal (P25), bus acknowledge signal output terminal (BACK)                                         |  |  |  |  |  |
|                               |                  |        |              | or programmable timer external clock input terminal (EXCL1)                                               |  |  |  |  |  |
| P26/CL/EXCL2                  | 23               | I/O    | I (Pull-up)  | I/O terminal (P26), LCD clock output terminal (CL)                                                        |  |  |  |  |  |
|                               | -                |        |              | or programmable timer external clock input terminal (EXCL2)                                               |  |  |  |  |  |
| P27/FR/EXCL3                  | 22               | I/O    | I (Pull-up)  | I/O terminal (P27), LCD frame signal output terminal (FR)                                                 |  |  |  |  |  |
|                               | -                |        | (            | or programmable timer external clock input terminal (EXCL3)                                               |  |  |  |  |  |
| COM0-COM63                    | 132-101, 269-300 | 0      | 0 (L)        | LCD common output terminals                                                                               |  |  |  |  |  |
| SEG0-SEG127                   | 137-264          | 0      | 0 (L)        | LCD segment output terminals                                                                              |  |  |  |  |  |
| RESET                         | 20               | I      | I (Pull-up)  | Initial reset input terminal                                                                              |  |  |  |  |  |
| TEST                          | 18               | I      | I (Pull-up)  | Test input terminal                                                                                       |  |  |  |  |  |
|                               | 4177 L C . T     | -      | - (1 411 41) |                                                                                                           |  |  |  |  |  |

Table 1331 Pad description

\* (Pull-up): Pulled up (Hi-Z when Gate Direct is selected by mask option), (H): HIGH level output, (L): LOW level output

# 1.4 Mask Option

Mask options shown below are provided for the S1C88655.

Several hardware specifications are prepared in each mask option, and one of them can be selected according to the application. Multiple specifications are available in each option item as indicated in the Option List.

#### PERIPHERAL CIRCUIT BOARD option list

Select the specifications that meet the target system and check the appropriate box.

The option selection is done interactively on the screen during function option generator winfog execution, using this option list as reference. Mask pattern of the IC is finally generated based on the data created by the winfog. Refer to the "S5U1C88000C Manual II" for details on the winfog.

The following shows the options for configuring the Peripheral Circuit Board (S5U1C88000P1 with S5U1C88655P2) installed in the ICE (S5U1C88000H5). The selections do not affect the IC's mask option.

#### A OSCI SYSTEM CLOCK

 $\Box$  1. Internal Clock  $\Box$  2. User Clock

#### **B OSC3 SYSTEM CLOCK**

 $\Box$  1. Internal Clock  $\Box$  2. User Clock

When User Clock is selected, input a clock to the OSC1 terminal. When Internal Clock is selected, the clock frequency is changed according to the oscillation circuit selected by the IC's mask option.

When User Clock is selected, input a clock to the OSC3 terminal. When Internal Clock is selected, the clock frequency is changed according to the oscillation circuit selected by the IC's mask option.

#### S1C88655 mask option list

The following shows the option list for generating the IC's mask pattern. Note that the Peripheral Circuit Board installed in the ICE does not support some options.

1 OSCI SYSTEM CLOCK

 $\Box$  1. Crystal  $\Box$  2. CR

#### 2 OSC3 SYSTEM CLOCK

□ 1. Crystal □ 2. Ceramic □ 3. CR

3 INPUT PORT PULL UP RESISTOR

MCU/MPU ....□ 1. With Resistor □ 2. Gate Direct
 RESET .....□ 1. With Resistor □ 2. Gate Direct

The specification of the OSC1 oscillation circuit can be selected from among two types: "Crystal oscillation" and "CR oscillation". Refer to Section 8.4, "OSC1 Oscillation Circuit", for details.

The specification of the OSC3 oscillation circuit can be selected from among three types: "Crystal oscillation", "Ceramic oscillation" and "CR oscillation". Refer to Section 8.3, "OSC3 Oscillation Circuit", for details.

This mask option can select whether the pull-up resistors for the MCU/ $\overline{\text{MPU}}$  and  $\overline{\text{RESET}}$  terminals are used or not.

#### 4 I/O PORT PULL UP RESISTOR

| I/O PORT PULL UP RESIST  | UK               |
|--------------------------|------------------|
| • P00 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P01 🗆 1. With Resistor | 2. Gate Direct   |
| • P02 🗆 1. With Resistor | 2. Gate Direct   |
| • P03 🗆 1. With Resistor | 2. Gate Direct   |
| • P04 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P05 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P06 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P07 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P10 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P11 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P12 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P13 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P14 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P15 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P16 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P17 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P20 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P21 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P22 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P23 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P24 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P25 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P26 🗆 1. With Resistor | 🗆 2. Gate Direct |
| • P27 🗆 1. With Resistor | 🗆 2. Gate Direct |
|                          |                  |

#### 5 I/O PORT INPUT I/F LEVEL

| • P10 🗆 1. CMOS Level | 🗆 2. CMOS Schmitt |
|-----------------------|-------------------|
| • P11 🗆 1. CMOS Level | 2. CMOS Schmitt   |
| • P12 🗆 1. CMOS Level | 2. CMOS Schmitt   |
| • P13 🗆 1. CMOS Level | 2. CMOS Schmitt   |
| • P14 🗆 1. CMOS Level | 2. CMOS Schmitt   |
| • P15 🗆 1. CMOS Level | 2. CMOS Schmitt   |
| • P16 🗆 1. CMOS Level | 🗆 2. CMOS Schmitt |
| • P17 🗆 1. CMOS Level | 2. CMOS Schmitt   |
| • P20 🗆 1. CMOS Level | 🗆 2. CMOS Schmitt |
| • P21 🗆 1. CMOS Level | 2. CMOS Schmitt   |
| • P22 🗆 1. CMOS Level | 2. CMOS Schmitt   |
| • P23 🗆 1. CMOS Level | 2. CMOS Schmitt   |
| • P24 🗆 1. CMOS Level | 2. CMOS Schmitt   |
| • P25 🗆 1. CMOS Level | 2. CMOS Schmitt   |
| • P26 🗆 1. CMOS Level | 🗆 2. CMOS Schmitt |
| • P27 🗆 1. CMOS Level | 2. CMOS Schmitt   |

#### 6 RESET VOLTAGE DETECTOR

 $\Box$  1. Not Use  $\Box$  2. Use

#### 7 WATCHDOG TIMER OVERFLOW CYCLE

- 🗆 1. Not Use
- 2. 32768/fosc1
  - $(1-\sec cycle when fOSC1 = 32 kHz)$
- □ 3. 65536/fOSC1
  - (2-sec cycle when fOSC1 = 32 kHz)
- □ 4. 131072/fOSC1
  - (4-sec cycle when fOSC1 = 32 kHz)

#### 8 WATCHDOG TIMER OVERFLOW SIGNAL

- 🗆 1. Interrupt (NMI)
- 🗆 2. Reset

This mask option can select whether the pull-up resistor for the I/O port terminal (it works during input mode) is used or not. It is possible to select for each bit of the I/O ports. Refer to Chapter 10, "I/O Ports (P Ports)", for details.

This mask option can select the interface level of the I/O (P) port from either the CMOS level or CMOS Schmitt level. It is possible to select for each bit of the I/O ports. Refer to Chapter 10, "I/O Ports (P Ports)", for details.

This mask option can select whether the built-in reset voltage detection circuit is used or not. Refer to Section 5.1.2, "Reset voltage detector", for details.

This mask option can select a watchdog timer overflow cycle. Refer to Chapter 14, "Watchdog Timer", for details.

This mask option can select whether the watchdog timer overflow signal is used to generate NMI or reset. Refer to Chapter 14, "Watchdog Timer", for details.

# 2 **CPU**

This chapter explains the CPU and operating mode.

# 2.1 Core CPU

The S1C88655 contains the S1C88 8-bit core CPU, so its register configuration, command set and other core features are similar to other family processors incorporating the S1C88.

See the "S1C88 Core CPU Manual" for the S1C88.

## 2.1.1 CPU model

The S1C88655 employs the Model 3 S1C88 CPU which has a maximum address space of 1M bytes  $\times$  4.

## 2.1.2 CC (customized condition flag)

The S1C88655 does not use the customized condition flag (CC) in the core CPU. Accordingly, it cannot be used as a branching condition for the conditional branching instruction (JRS, CARS).

# 2.2 MCU Mode and MPU Mode

The chip operating mode can be set to one of two settings using the  $MCU/\overline{MPU}$  terminal.

## 2.2.1 MCU mode

Setting MCU mode: MCU/MPU terminal = HIGH

Set to this mode when using the internal ROM. With respect to areas other than internal memory, external memory can even be expanded. See Chapter 3, "Memory Map", for the memory map.

In the MCU mode, during initial reset, only systems in internal memory are activated. The internal program ROM is normally fixed as the top portion of the common program memory area (logical space 0000H-7FFFH). Exception processing vectors are assigned in the internal program ROM. Furthermore, the application initialization routines that start with reset exception processing must likewise be written to the internal program ROM. Since bus and other settings which correlate with external expanded memory can be executed in software, this processing is executed in the initialization routine written to the internal program ROM. Once these bus mode settings are made, external memory can be accessed. See Chapter 6, "System Controller and Bus Control", for setting bus mode.

When accessing the internal memory in this mode, the chip enable  $(\overline{CE})$  and read  $(\overline{RD})/\text{write}$  ( $\overline{WR}$ ) signals are not output to external memory, and the data bus (D0–D7) goes into high impedance status (or pull-up status).

Consequently, in cases where addresses overlap in external and internal memory, the areas in external memory will be unavailable.

## 2.2.2 MPU mode

Setting MPU mode: MCU/MPU terminal = LOW

The internal ROM area is released to an external device. The internal ROM then becomes unusable and when this area is accessed, chip enable ( $\overline{\text{CE}}$ ) and read ( $\overline{\text{RD}}$ )/write ( $\overline{\text{WR}}$ ) signals are output to external memory and the data bus (D0–D7) become active. These signals are not output to an external device when other areas of internal memory are accessed.

In the MPU mode, the system is activated by external memory.

When using this mode, the exception processing vectors and initialization routine must be assigned within the common area (000000H–007FFFH).

## 2.2.3 Mask option

You can select whether the built-in pull-up resistor for the MCU/ $\overline{\text{MPU}}$  terminal is used or not by mask option.

Input port pull-up resistor  $\square$  Gate direct

- Notes: Setting of MCU/MPU terminal is latched at the rising edge of a reset signal input from the RESET terminal. Therefore, if the setting is to be changed, the RESET terminal must be set to LOW level once again.
  - The data bus while the CPU accesses to the internal memory can be select into high-impedance status or pulled up to high using the pull-up control register and mask option. See Chapter 10, "I/O Ports (P Ports)", for details.

# 3 MEMORY MAP

This chapter explains the memory configuration of the S1C88655.

# 3.1 MCU Single Chip Mode

The S1C88655 should be placed in single chip mode when it is used as a single chip microcomputer without an externally expanded memory. Since this mode uses the internal ROM, the system can be operated only in MCU mode. The MPU mode does not allow the IC to be placed in single chip mode. This mode does not need an external bus, so the terminals normally set for the external bus can be used as general-purpose output ports or I/O ports. See Chapter 6, "System Controller and Bus Control", for how to set single chip mode.

# 3.2 MCU Expansion Mode

The S1C88655 must be placed in expansion mode when it is used with an externally expanded memory up to 1M bytes  $\times$  4. The internal ROM is enabled in the MCU mode, so external memory can be assigned to the area from 100000H to 4FFFFFH. See Chapter 6, "System Controller and Bus Control", for how to set expansion mode.

# 3.3 MPU Expansion Mode

The internal ROM area is released in the MPU mode, so external memory can be assigned to the area from 000000H to 3FFFFFH. However, the area from 00C000H to 00FFFFH is assigned to the internal memory and cannot be used to access an external device.

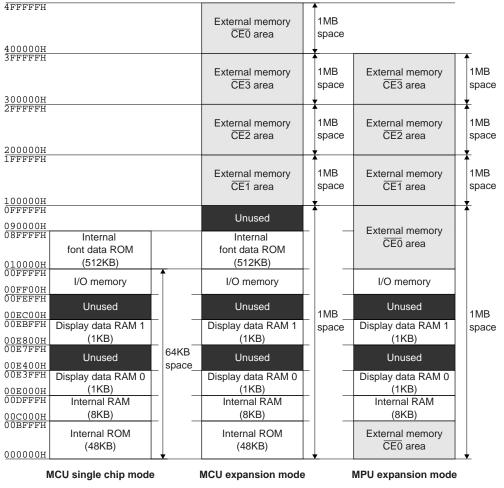



Fig. 3.1.1 Memory map

## 3.4 Internal Memory

The S1C88655 is equipped with a ROM and RAM as shown in Figure 3.1.1. Small-scale applications can be implemented in this chip alone.

#### 3.4.1 Program ROM

The S1C88655 has a built-in 48K-byte program ROM. The ROM is allocated to 000000H–00BFFFH. This ROM areas can be released to external memory depending on the setting of the MCU/ $\overline{\text{MPU}}$  terminal. (See Section 2.2, "MCU Mode and MPU Mode".)

### 3.4.2 RAM

The internal RAM capacity is 8K bytes and is allocated to 00C000H–00DFFFH. Even when external memory which overlaps the internal RAM area is expanded, the RAM area is not released to external memory. Accesses to this

area are always aimed at the internal RAM.

### 3.4.3 Display data RAM

The S1C88655 is equipped with an internal display data RAM which stores a display data for LCD driver. The display data RAM is allocated to 00E000H–00EBFFH. See Chapter 15, "LCD Driver", for details of the display data RAM. The display data RAM area cannot be released to external memory. Accesses to this area are always aimed at the display data RAM.

### 3.4.4 Font data ROM

The S1C88655 has a built-in ROM that can be used to store font data. The ROM capacity is 512K bytes and is allocated to 010000H–08FFFFH. The entire ROM area when any font data is not used or the remaining area unused for font data can be used for a program and data storage area (see "Appendix B" for use of font data).

This ROM area can be released to external memory depending on the setting of the  $MCU/\overline{MPU}$  terminal. (See Section 2.2, "MCU Mode and MPU Mode".)

# 3.5 I/O Memory

A memory mapped I/O method is employed in the S1C88655 for interfacing with the internal peripheral circuits. The peripheral circuit control bits and data registers are arranged in the data memory space, so normal memory access operations control the circuits and transfer data. The I/O memory is arranged in the area from 00FF00H to 00FFFFH. Even when external memory which overlaps the I/O memory area is expanded, the I/O memory area is not released to external memory. Accesses to this area are always aimed at the I/O memory. The following shows the S1C88655 I/O memory map.

| Address | Bit | Name   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 1                              | 0                               | SR  | R/W | Comment                 |
|---------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|---------------------------------|-----|-----|-------------------------|
| 00FF00  | D7  | BUSMOD | Bus mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Expansion                      | Single chip                     | 0   | R/W |                         |
| (MCU)   | D6  | CPUMOD | CPU mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Maximum                        | Minimum                         | 0   | R/W |                         |
|         | D5  | -      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | I                              | -                               | -   | -   | Constantly "0" when     |
|         | D4  | _      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | _                              | -                               | -   | -   | being read              |
|         | D3  | CE3    | $\overline{CE3}$ (R33) $\overline{\overline{CE3}}$ is a second seco | 1 (5) 11    | $\overline{\text{CE3}}$ enable | $\overline{\text{CE3}}$ disable | 0   | R/W | In Single chip mode,    |
|         | D2  | CE2    | $\overline{CE2}$ (R32) $\overline{CE}$ signal output Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | $\overline{\text{CE2}}$ enable | $\overline{\text{CE2}}$ disable | 0   | R/W | these setting are fixed |
|         | D1  | CE1    | $\overline{CE1}$ (R31) Enable: $\overline{CE}$ signal out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -           | $\overline{\text{CE1}}$ enable | CE1 disable                     | 0   | R/W | at DC output.           |
|         | D0  | CE0    | $\overline{CE0}$ (R30) Disable: DC (R3x) out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tput        | $\overline{\text{CE0}}$ enable | $\overline{\text{CE0}}$ disable | 0   | R/W |                         |
| 00FF00  | D7  | BUSMOD | Bus mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Expansion                      | -                               | 1   | R   | Expansion mode only     |
| (MPU)   | D6  | CPUMOD | CPU mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Maximum                        | Minimum                         | 0   | R/W |                         |
|         | D5  | -      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | -                              | -                               | -   | -   | Constantly "0" when     |
|         | D4  | _      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | _                              | -                               | -   | -   | being read              |
|         | D3  | CE3    | $\overline{CE3}$ (R33) $\overline{CE}$ signal extract Each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1- /D:1-1- | $\overline{\text{CE3}}$ enable | $\overline{\text{CE3}}$ disable | 0   | R/W |                         |
|         | D2  | CE2    | $\overline{CE2}$ (R32)<br>$\overline{CE2}$ (R32)<br>$\overline{CE1}$ (R21)<br>$\overline{CE}$ signal output Enable: $\overline{CE}$ signal output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | $\overline{\text{CE2}}$ enable | $\overline{\text{CE2}}$ disable | 0   | R/W |                         |
|         | D1  | CE1    | $\overline{CE1}$ (R31)<br>$\overline{CE2}$ (R31)<br>$\overline{CE2}$ (R32)<br>Disable: DC (R3x) out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -           | CE1 enable                     | $\overline{CE1}$ disable        | 0   | R/W |                         |
|         | D0  | CE0    | $\overline{\text{CE0}}$ (R30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ւքաւ        | $\overline{\text{CE0}}$ enable | -                               | 1   | R   |                         |
| 00FF01  | D7  | SPP7   | Stack pointer page address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (MSB)       | 1                              | 0                               | 0   | R/W |                         |
|         | D6  | SPP6   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1           | 0                              | 0                               | R/W |     |                         |
|         | D5  | SPP5   | < SP page allocatable address >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 1                              | 0                               | 0   | R/W |                         |
|         | D4  | SPP4   | • Single chip mode: only 0 page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 1                              | 0                               | 0   | R/W |                         |
|         | D3  | SPP3   | • Expansion mode: 0–27H page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 1                              | 0                               | 0   | R/W |                         |
|         |     | SPP2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 1                              | 0                               | 0   | R/W |                         |
|         | D1  | SPP1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 1                              | 0                               | 0   | R/W |                         |
|         | D0  | SPP0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (LSB)       | 1                              | 0                               | 0   | R/W |                         |
| 00FF02  | D7  | EBR    | Bus release enable register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P24         | BREQ                           | _                               | 0   | R/W |                         |
|         |     |        | (P24 and P25 terminal specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n) P25      | BACK                           | -                               |     |     |                         |
|         | D6  | WT2    | Wait control register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number      |                                |                                 | 0   | R/W |                         |
|         |     |        | <u>WT2</u> <u>WT1</u> <u>WT0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of state    |                                |                                 |     |     |                         |
|         |     |        | 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14          |                                |                                 |     |     |                         |
|         | D5  | WT1    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12          |                                |                                 | 0   | R/W |                         |
|         |     |        | $1 \qquad 0 \qquad 1$<br>$1 \qquad 0 \qquad 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>8     |                                |                                 |     |     |                         |
|         |     |        | 0 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8<br>6      |                                |                                 |     | L   |                         |
|         | D4  | WT0    | 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4           |                                |                                 | 0   | R/W |                         |
|         |     |        | 0 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2           |                                |                                 |     |     |                         |
|         |     |        | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No wait     |                                |                                 |     |     |                         |
|         | D3  | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | -                              | -                               | -   | -   | "0" when being read     |
|         | D2  | CLKCHG | CPU operating clock switch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | OSC3                           | OSC1                            | 1   | R/W | *1                      |
|         | D1  | SOSC3  | OSC3 oscillation On/Off control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | On                             | Off                             | 1   | R/W | *2                      |
|         | D0  | SOSC1  | OSC1 oscillation On/Off control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | On                             | Off                             | 1   | R/W | *3                      |

Table 3.5.1(a)I/O Memory map (00FF00H-00FF02H)

\*1 CLKCHG cannot be set to "0" when SOSC1 = "0" (OSC1 oscillation is OFF) and cannot be set to "1" when SOSC3 = "0" (OSC3 oscillation is OFF).

\*2 Cannot be turned OFF when the CPU is running with the OSC3 clock.

\*3 Cannot be turned OFF when the CPU is running with the OSC1 clock or the watchdog timer is enabled.

Note: All the interrupts including NMI are disabled, until you write the optional value into both the "00FF00H" and "00FF01H" addresses.

| Address | Bit        | Name   | Table 3.5.1(b)     I/O Memory map (6       Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | 0                 | SR | R/W   | Comment             |
|---------|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|----|-------|---------------------|
| 00FF04  | D7         | FOUTON | FOUT output control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | On       | Off               | 0  | R/W   |                     |
| 20.707  |            | FOUT2  | FOUT frequency selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                   | 0  | R/W   | -                   |
|         |            |        | FOUT2 FOUT1 FOUT0 Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                   |    |       |                     |
|         |            |        | $\frac{10012}{1} \frac{10011}{1} \frac{10010}{1} \frac{10010}{10000} \frac{100000}{1000000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                   |    |       |                     |
|         | D5         | FOUT1  | 1 1 0 fosc3 / 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   | 0  | R/W   |                     |
|         |            |        | 1 0 1 fosc3 / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   | 0  | 10.11 |                     |
|         |            |        | 1 	 0 	 0 	 fosc3/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |    |       |                     |
|         | D4         | FOUT0  | 0 1 1 fosc1/8<br>0 1 0 fosc1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                   | 0  | R/W   |                     |
|         |            |        | 0 	 0 	 1 	 0 	 103c1/4<br>0 	 0 	 1 	 fosc1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                   | 0  | 10.11 |                     |
|         |            |        | 0 0 0 fosc1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   |    |       |                     |
|         | D3         | _      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _        | _                 | _  | _     | Constantly "0" when |
|         | D2         | _      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _        | _                 | _  | _     | being read          |
|         | D1         | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        | _                 | _  | _     | being read          |
|         |            | WDRST  | Watchdog timer reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reset    | -<br>No operation |    | w     | -                   |
| 00FF08  |            | LCLK   | CL output control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | On       | Off               | 0  | R/W   |                     |
| 001100  |            | LFRM   | FR output control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | On       | Off               | 0  | R/W   |                     |
|         |            |        | SEG output assignment control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Normal   | Reverse           | 1  | R/W   | -                   |
|         | -          |        | COM output assignment control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Normal   | Reverse           | 1  | R/W   | -                   |
|         |            |        | LCD display data RAM area selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Display area 0    | 0  | R/W   | -                   |
|         |            |        | Reverse display control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2      | 1.5               | 1  | R/W   | -                   |
|         |            | DSPREV |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Normal   | Reverse           | 0  |       | -                   |
|         | וט         | DSPCI  | LCD display control<br>DSPC1 DSPC0 Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   | 0  | R/W   |                     |
|         |            |        | $\frac{1}{1} \frac{1}{1} \frac{1}$ |          |                   |    |       |                     |
|         | D0         | DSPC0  | 1 0 All dots OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   | 0  | R/W   |                     |
|         |            |        | 0 1 Normal display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                   |    |       |                     |
| 005500  | <b>D</b> 7 |        | 0 0 Display off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   |    |       |                     |
| 00FF09  |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | -                 | -  | -     | "0" when being read |
|         |            |        | LCD driver circuit On/Off control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | On       | Off               | 0  | R/W   | -                   |
|         |            | LBIAS  | LCD bias selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/9 bias | 1/7 bias          | 1  | R/W   | -                   |
|         |            | VCON   | Vc1-4 voltage generator On/Off control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | On       | Off               | 0  | R/W   | -                   |
|         |            | VC5ON  | Vc5 voltage generator On/Off control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | On       | Off               | 0  | R/W   | -                   |
|         |            | LBON   | Supply voltage booster On/Off control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | On       | Off               | 0  | R/W   |                     |
|         | D1         | LCDCS1 | Display timing generator control<br>LCDCS1 LCDCS0 Source clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                   | 0  | R/W   |                     |
|         |            |        | $\frac{1}{1} \frac{1}{1} \qquad P \text{ timer 5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                   |    |       |                     |
|         | D0         | LCDCS0 | 1 0 fosc1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                   | 0  | R/W   |                     |
|         |            |        | 0 1 fosci/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                   |    |       |                     |
| 005504  | <b>D</b> 7 |        | 0 0 Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                   |    |       | G                   |
| 00FF0A  |            | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | -                 | _  | -     | Constantly "0" when |
|         | D6         | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | -                 | _  | -     | being read          |
|         | D5         | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | -                 | -  | -     |                     |
|         | D4         | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | -                 | -  | -     |                     |
|         | D3         |        | – VC5 voltage generator resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        | -                 | -  | -     |                     |
|         | 02         | LRSEL2 | ratio adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   | 0  | R/W   |                     |
|         |            |        | LRSEL2 LRSEL1 LRSEL0 Resistance ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |    |       |                     |
|         |            |        | 1 1 1 Not allowed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                   |    |       |                     |
|         | 1טן        | LRSEL1 | 1 1 0 8.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   | 0  | R/W   |                     |
|         |            |        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   |    |       |                     |
|         |            |        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   |    |       |                     |
|         | D0         | LRSEL0 | 0 	 1 	 0 	 5.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   | 0  | R/W   |                     |
|         |            |        | 0 0 1 4.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   |    |       |                     |
|         |            |        | 0 0 0 4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   |    |       |                     |

Table 3.5.1(b) I/O Memory map (00FF04H–00FF0AH)

|         | D'1 | Nerre        | Table 3.5.1(c) I/O Memory map (0                                                                                                                              | 1                                               |                             | 00 | DAA | 0                   |
|---------|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------|----|-----|---------------------|
| Address |     | Name         | Function                                                                                                                                                      | 1                                               | 0                           | SR | R/W | Comment             |
| 00FF0B  |     | -            | _                                                                                                                                                             | -                                               | -                           | -  | -   | Constantly "0" when |
|         | D6  | -            | -                                                                                                                                                             | -                                               | -                           | -  | -   | being read          |
|         |     | LEV5         | Vc5 voltage control                                                                                                                                           |                                                 |                             | 0  | R/W |                     |
|         |     | LEV4         | $\frac{\text{LEV5}}{1} \frac{\text{LEV4}}{1} \frac{\text{LEV3}}{1} \frac{\text{LEV2}}{1} \frac{\text{LEV1}}{1} \frac{\text{LEV0}}{1} \frac{\text{Level}}{63}$ |                                                 |                             | 0  | R/W |                     |
|         |     | LEV3         | 1 	 1 	 1 	 1 	 1 	 0 	 62                                                                                                                                    |                                                 |                             | 0  | R/W |                     |
|         |     | LEV2         |                                                                                                                                                               |                                                 |                             | 0  | R/W |                     |
|         |     | LEV1         | 0 0 0 0 0 1 1                                                                                                                                                 |                                                 |                             | 0  | R/W |                     |
|         |     | LEV0         | 0 0 0 0 0 0 0                                                                                                                                                 |                                                 |                             | 0  | R/W |                     |
| 00FF0C  | D7  | -            | _                                                                                                                                                             | -                                               | -                           | -  | R   | Constantly "0" when |
|         | D6  | -            | _                                                                                                                                                             | -                                               | -                           | -  | R   | being read          |
|         |     | SVDDT        | SVD detection data                                                                                                                                            | Low                                             | Normal                      | 0  | R   | -                   |
|         |     | SVDON        | SVD circuit On/Off                                                                                                                                            | On                                              | Off                         | 0  | R/W | -                   |
|         | D3  | SVDS3        | SVD criteria voltage setting           SVDS3         SVDS2         SVDS1         SVDS0         Voltage (V)                                                    |                                                 |                             | 0  | R/W |                     |
|         | D2  | SVDS2        | $\frac{5\sqrt{DS5}}{1} \frac{5\sqrt{DS2}}{1} \frac{5\sqrt{DS1}}{1} \frac{5\sqrt{DS0}}{1} \frac{\sqrt{0143}}{2.7}$                                             |                                                 |                             | 0  | R/W |                     |
|         | D1  | SVDS1        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          |                                                 |                             | 0  | R/W |                     |
|         |     |              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                         |                                                 |                             |    |     |                     |
|         |     | SVDS0        | 0 0 1 1 1.8                                                                                                                                                   |                                                 |                             | 0  | R/W |                     |
| 00FF10  |     | PSIF01       | Serial interface 0 interrupt priority register                                                                                                                | PSIF01 PSIF                                     | 500                         | 0  | R/W |                     |
|         |     | PSIF00       |                                                                                                                                                               | PPT1 PP7                                        | 0                           |    |     | -                   |
|         |     | PPT1         | Programmable timer 1–0 interrupt                                                                                                                              | PPT3 PPT                                        |                             | 0  | R/W |                     |
|         |     | PPT0         | priority register                                                                                                                                             | PP21 PP2                                        |                             |    |     | -                   |
|         |     | PPT3         | Programmable timer 3–2 interrupt                                                                                                                              | 1    1     1    0                               |                             | 0  | R/W |                     |
|         |     | PPT2         | priority register                                                                                                                                             | 0 1                                             | Level 1                     |    |     | -                   |
|         |     | PP21         | P20–P27 interrupt priority register                                                                                                                           | 0 0                                             | Level 0                     | 0  | R/W |                     |
| 005544  |     | PP20         | <b>D</b>                                                                                                                                                      |                                                 |                             |    |     |                     |
| 00FF11  |     | PPT5         | Programmable timer 5–4 interrupt                                                                                                                              | PPT5 PPT                                        | [4                          | 0  | R/W |                     |
|         |     | PPT4         | priority register                                                                                                                                             | PPT7 PP1                                        | [6                          |    |     | -                   |
|         |     | PPT7         | Programmable timer 7–6 interrupt                                                                                                                              |                                                 | 40 Priority                 | 0  | R/W |                     |
|         |     | PPT6         | priority register                                                                                                                                             | $\frac{\text{PSIF11}}{1} \frac{\text{PSIF}}{1}$ | $\frac{10}{\text{Level }3}$ |    |     | -                   |
|         |     | PTM1         | Clock timer interrupt priority register                                                                                                                       | 1 0                                             |                             | 0  | R/W |                     |
|         |     | PTM0         |                                                                                                                                                               | 0 1                                             | Level 1                     |    |     | -                   |
|         |     | PSIF11       | Serial interface 1 interrupt priority register                                                                                                                | 0 0                                             | Level 0                     | 0  | R/W |                     |
| 005544  |     | PSIF10       | P27                                                                                                                                                           |                                                 |                             |    |     |                     |
| 00FF14  |     | EP27         | P27 interrupt enable                                                                                                                                          |                                                 |                             |    |     |                     |
|         |     | EP26<br>EP25 | P26 interrupt enable                                                                                                                                          |                                                 |                             |    |     |                     |
|         |     |              | P25 interrupt enable                                                                                                                                          | <b>*</b>                                        | <b>.</b>                    |    |     |                     |
|         |     | EP24         | P24 interrupt enable                                                                                                                                          | Interrupt                                       | Interrupt                   | 0  | R/W |                     |
|         |     | EP23         | P23 interrupt enable                                                                                                                                          | enable                                          | disable                     |    |     |                     |
|         |     | EP22         | P22 interrupt enable                                                                                                                                          |                                                 |                             |    |     |                     |
|         |     | EP21<br>EP20 | P21 interrupt enable                                                                                                                                          |                                                 |                             |    |     |                     |
| 00FF15  |     |              | P20 interrupt enable                                                                                                                                          |                                                 |                             |    |     |                     |
| 007715  |     | ETC3         | PTM3 compare match interrupt enable                                                                                                                           |                                                 |                             |    |     |                     |
|         |     | ETU3         | PTM3 underflow interrupt enable                                                                                                                               |                                                 |                             |    |     |                     |
|         |     | ETC2         | PTM2 compare match interrupt enable                                                                                                                           |                                                 | T .                         |    |     |                     |
|         |     | ETU2         | PTM2 underflow interrupt enable                                                                                                                               | Interrupt                                       | Interrupt                   | 0  | R/W |                     |
|         |     | ETC1         | PTM1 compare match interrupt enable                                                                                                                           | enable                                          | disable                     |    |     |                     |
|         |     | ETU1         | PTM1 underflow interrupt enable                                                                                                                               |                                                 |                             |    |     |                     |
|         |     | ETU0         | PTM0 underflow interrupt enable                                                                                                                               |                                                 |                             |    |     |                     |
|         | טט  | ETC0         | PTM0 compare match interrupt enable                                                                                                                           |                                                 |                             |    |     |                     |

 Table 3.5.1(c)
 I/O Memory map (00FF0BH-00FF15H)

| Address | Bit | Name   | Function                                      | 1                      | 0                         | SR | R/W | Comment             |
|---------|-----|--------|-----------------------------------------------|------------------------|---------------------------|----|-----|---------------------|
| 00FF16  | D7  | -      | _                                             | -                      | -                         | -  | R   | Constantly "0" when |
|         | D6  | -      | _                                             | -                      | -                         | _  | R   | being read          |
|         | D5  | ESERR1 | Serial I/F 1 (error) interrupt enable         |                        |                           |    |     |                     |
|         | D4  | ESREC1 | Serial I/F 1 (receive) interrupt enable       |                        |                           | 0  | R/W |                     |
|         | D3  | ESTRA1 | Serial I/F 1 (transmit) interrupt enable      | Interrupt              | Interrupt                 |    |     |                     |
|         | D2  | ESERR0 | Serial I/F 0 (error) interrupt enable         | enable                 | disable                   |    |     |                     |
|         | D1  | ESREC0 | Serial I/F 0 (receive) interrupt enable       |                        |                           | 0  | R/W |                     |
|         | D0  | ESTRA0 | Serial I/F 0 (transmit) interrupt enable      |                        |                           |    |     |                     |
| 00FF17  | D7  | _      | -                                             | _                      | -                         | _  | R   | Constantly "0" when |
|         | D6  | _      | -                                             | -                      | -                         | _  | R   | being read          |
|         | D5  | _      | -                                             | -                      | -                         | _  | R   |                     |
|         | D4  | _      | -                                             | -                      | -                         | _  | R   |                     |
|         | D3  | ETM32  | Clock timer 32 Hz interrupt enable            |                        |                           |    |     |                     |
|         | D2  | ETM8   | Clock timer 8 Hz interrupt enable             | Interrupt              | Interrupt                 | 0  | DAV |                     |
|         | D1  | ETM2   | Clock timer 2 Hz interrupt enable             | enable                 | disable                   | 0  | R/W |                     |
|         | D0  | ETM1   | Clock timer 1 Hz interrupt enable             |                        |                           |    |     |                     |
| 00FF18  | D7  | ETC7   | PTM7 compare match interrupt enable           |                        |                           |    |     |                     |
|         | D6  | ETU7   | PTM7 underflow interrupt enable               |                        |                           |    |     |                     |
|         | D5  | ETC6   | PTM6 compare match interrupt enable           |                        |                           |    |     |                     |
|         | D4  | ETU6   | PTM6 underflow interrupt enable               | Interrupt              | Interrupt                 | 0  | DAV |                     |
|         | D3  | ETC5   | PTM5 compare match interrupt enable           | enable                 | disable                   | 0  | R/W |                     |
|         | D2  | ETU5   | PTM5 underflow interrupt enable               |                        |                           |    |     |                     |
|         | D1  | ETC4   | PTM4 compare match interrupt enable           |                        |                           |    |     |                     |
|         | D0  | ETU4   | PTM4 underflow interrupt enable               |                        |                           |    |     |                     |
| 00FF1A  | D7  | FP27   | P27 interrupt factor flag                     | (R)                    | (R)                       |    |     |                     |
|         | D6  | FP26   | P26 interrupt factor flag                     | Interrupt              | No interrupt              |    |     |                     |
|         | D5  | FP25   | P25 interrupt factor flag                     | factor is              | factor is                 |    |     |                     |
|         | D4  | FP24   | P24 interrupt factor flag                     | occurred               | occurred                  | 0  | DAV |                     |
|         | D3  | FP23   | P23 interrupt factor flag                     |                        |                           | 0  | R/W |                     |
|         | D2  | FP22   | P22 interrupt factor flag                     | (W)                    | (W)                       |    |     |                     |
|         | D1  | FP21   | P21 interrupt factor flag                     | Reset                  | No operation              |    |     |                     |
|         | D0  | FP20   | P20 interrupt factor flag                     |                        |                           |    |     |                     |
| 00FF1B  | D7  | FTC3   | PTM3 compare match interrupt factor flag      | (R)                    | (R)                       |    |     |                     |
|         | D6  | FTU3   | PTM3 underflow interrupt factor flag          | Interrupt              | No interrupt              |    |     |                     |
|         | D5  | FTC2   | PTM2 compare match interrupt factor flag      | factor is              | factor is                 |    |     |                     |
|         | D4  | FTU2   | PTM2 underflow interrupt factor flag          | occurred               | occurred                  | 0  | DAV |                     |
|         | D3  | FTC1   | PTM1 compare match interrupt factor flag      |                        |                           | 0  | R/W |                     |
|         | D2  | FTU1   | PTM1 underflow interrupt factor flag          | (W)                    | (W)                       |    |     |                     |
|         | D1  | FTU0   | PTM0 underflow interrupt factor flag          | Reset                  | No operation              |    |     |                     |
|         | D0  | FTC0   | PTM0 compare match interrupt factor flag      |                        |                           |    |     |                     |
| 00FF1C  | D7  | -      | _                                             | -                      | -                         | _  | R   | Constantly "0" when |
|         | D6  | _      | _                                             | -                      | -                         | _  | R   | being read          |
|         | D5  | FSERR1 | Serial I/F 1 (error) interrupt factor flag    | (R)                    | (R)                       |    |     |                     |
|         | D4  | FSREC1 | Serial I/F 1 (receive) interrupt factor flag  | Interrupt<br>factor is | No interrupt<br>factor is | 0  | R/W |                     |
|         | D3  | FSTRA1 | Serial I/F 1 (transmit) interrupt factor flag | occurred               | occurred                  |    |     |                     |
|         |     |        | Serial I/F 0 (error) interrupt factor flag    |                        |                           |    |     | 1                   |
|         |     |        | Serial I/F 0 (receive) interrupt factor flag  | (W)                    | (W)                       | 0  | R/W |                     |
|         |     |        | Serial I/F 0 (transmit) interrupt factor flag | Reset                  | No operation              |    |     |                     |

Table 3.5.1(d) I/O Memory map (00FF16H–00FF1CH)

| Address | Bit | Name           | Function 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SR | R/W        | Comment             |
|---------|-----|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|---------------------|
| 00FF1D  | D7  | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  | R          | Constantly "0" when |
|         | D6  | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  | R          | being read          |
|         | D5  | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  | R          |                     |
|         | D4  | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _  | R          |                     |
|         | D3  | FTM32          | Clock timer 32 Hz interrupt factor flag (R) (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |            |                     |
|         | D2  | FTM8           | Clock timer 8 Hz interrupt factor flag Occurred Not occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | DAV        |                     |
|         | D1  | FTM2           | Clock timer 2 Hz interrupt factor flag (W) (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0  | R/W        |                     |
|         | D0  | FTM1           | Clock timer 1 Hz interrupt factor flag Reset No operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n  |            |                     |
| 00FF1E  | D7  | FTC7           | PTM7 compare match interrupt factor flag (R) (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            |                     |
|         | D6  | FTU7           | PTM7 underflow interrupt factor flag Interrupt No interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :  |            |                     |
|         | D5  | FTC6           | PTM6 compare match interrupt factor flag factor is factor is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |            |                     |
|         |     | FTU6           | PTM6 underflow interrupt factor flag occurred occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |            |                     |
|         | D3  | FTC5           | PTM5 compare match interrupt factor flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0  | R/W        |                     |
|         | D2  | FTU5           | PTM5 underflow interrupt factor flag (W) (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |            |                     |
|         |     | FTC4           | PTM4 compare match interrupt factor flag Reset No operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |            |                     |
|         |     | FTU4           | PTM4 underflow interrupt factor flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -  |            |                     |
| 00FF20  |     | PRPRT1         | Programmable timer 1 clock control On Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0  | R/W        |                     |
| 00      |     | PST12          | Programmable timer 1 division ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  | R/W        |                     |
|         |     |                | PST12 PST11 PST10 (OSC3) (OSC1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 10.11      |                     |
|         |     |                | 1 1 1 fosc3 / 4096 fosc1 / 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |                     |
|         | D5  | PST11          | 1 1 0 fosc3 / 1024 fosc1 / 64<br>1 0 1 fosc3 / 256 fosc1 / 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0  | R/W        |                     |
|         |     |                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |            |                     |
|         |     | PST10          | 0 1 1 fosc3 / 32 fosc1 / 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0  | R/W        |                     |
|         | 04  | F3110          | 0 1 0 fosc3 / 8 fosc1 / 4<br>0 0 1 fosc3 / 2 fosc1 / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0  | K/W        |                     |
|         |     |                | 0 0 0 fosc3 / 1 fosc1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |            |                     |
|         | D3  | PRPRT0         | Programmable timer 0 clock control On Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0  | R/W        |                     |
|         | D2  | PST02          | Programmable timer 0 division ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  | R/W        |                     |
|         |     |                | $\frac{\text{PST02}}{1} \frac{\text{PST01}}{1} \frac{\text{PST00}}{1} \frac{(\text{OSC3})}{(1000)} \frac{(\text{OSC1})}{(1000)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            |                     |
|         |     | DOTO           | 1 1 1 fosc3 / 4096 fosc1 / 128<br>1 1 0 fosc3 / 1024 fosc1 / 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | DAV        |                     |
|         | D1  | PST01          | 1 0 1 fosc3 / 256 fosc1 / 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | R/W        |                     |
|         |     |                | 1 0 0 fosc3 / 64 fosc1 / 16<br>0 1 1 fosc3 / 32 fosc1 / 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |            |                     |
|         | D0  | PST00          | 0 1 1 fosc3 / 32 fosc1 / 8<br>0 1 0 fosc3 / 8 fosc1 / 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0  | R/W        |                     |
|         |     |                | 0 0 1 fosc3 / 2 fosc1 / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |            |                     |
|         |     |                | 0 0 0 fosc3 / 1 fosc1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |            |                     |
| 00FF21  |     |                | Programmable timer 3 clock control On Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0  | R/W        |                     |
|         | D6  | PST32          | Programmable timer 3 division ratio<br>PST32 PST31 PST30 (OSC3) (OSC1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0  | R/W        |                     |
|         |     |                | $\frac{1}{1} \frac{1}{1} \frac{1}$ |    |            |                     |
|         | D5  | PST31          | 1 1 0 fosc3 / 1024 fosc1 / 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0  | R/W        |                     |
|         |     |                | 1 0 1 fosc3 / 256 fosc1 / 32<br>1 0 0 fosc3 / 64 fosc1 / 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |            |                     |
|         |     |                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |            |                     |
|         | D4  | PST30          | 0 1 0 fosc3 / 8 fosc1 / 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0  | R/W        |                     |
|         |     |                | 0 0 1 fosc3 / 2 fosc1 / 2<br>0 0 0 fosc3 / 1 fosc1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |            |                     |
|         | 50  | PRPRT2         | Programmable timer 2 clock control On Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0  | R/W        |                     |
|         |     | PST22          | Programmable timer 2 division ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  | R/W        |                     |
|         |     | . 0122         | PST22 PST21 PST20 (OSC3) (OSC1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |            |                     |
|         |     |                | 1 1 1 fosc3 / 4096 fosc1 / 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | L          |                     |
|         |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 1          | 1                   |
|         | D1  | PST21          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0  | R/W        |                     |
|         | D1  | PST21          | 1         1         0         fosc3 / 1024         fosc1 / 64           1         0         1         fosc3 / 256         fosc1 / 32           1         0         0         fosc3 / 64         fosc1 / 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0  | R/W        |                     |
|         |     |                | 1         0         1         fosc3 / 256         fosc1 / 32           1         0         0         fosc3 / 64         fosc1 / 16           0         1         1         fosc3 / 32         fosc1 / 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |            |                     |
|         |     | PST21<br>PST20 | 1 0 1 fosc3 / 256 fosc1 / 32<br>1 0 0 fosc3 / 64 fosc1 / 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W<br>R/W |                     |

 Table 3.5.1(e)
 I/O Memory map (00FF1DH-00FF21H)

| Addroop | Dit        | Nomo   | Table 3.5.1(j) 1/0 Memory map (00FF23H=00FF2/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |            | Commont             |
|---------|------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|---------------------|
| Address |            | Name   | Function 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SR | R/W        |                     |
| 00FF23  |            | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -  | R          | Constantly "0" when |
|         | D6         | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -  | R          | being read          |
|         | D5         | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -  | R          |                     |
|         | D4         | _      | /W register 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0  | R/W        | Reserved register   |
|         |            | -      | rogrammable timer 3 source clock selection fosci fosci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W        | -                   |
|         | D2         | PRTF2  | rogrammable timer 2 source clock selection fosci fosci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W        | -                   |
|         | D1         | PRTF1  | rogrammable timer 1 source clock selection fosci fosci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W        | -                   |
|         | D0         | PRTF0  | rogrammable timer 0 source clock selection fosci fosci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W        |                     |
| 00FF24  | D7         | PRPRT5 | rogrammable timer 5 clock control On Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0  | R/W        | _                   |
|         | D6         | PST52  | rogrammable timer 5 division ratio<br>ST52 PST51 PST50 (OSC3) (OSC1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0  | R/W        |                     |
|         |            |        | 1 1 1 fosc3 / 4096 fosc1 / 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |            |                     |
|         | D5         | PST51  | 1 1 0 fosc3 / 1024 fosc1 / 64<br>1 0 1 fosc3 / 256 fosc1 / 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0  | R/W        |                     |
|         |            |        | 1 0 0 $fosc3 / 64$ $fosc1 / 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |            |                     |
|         | D4         | PST50  | 0 1 1 fosc3/32 fosc1/8<br>0 1 0 fosc3/8 fosc1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0  | R/W        |                     |
|         |            |        | 0 0 1 fosc3 / 2 fosc1 / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |                     |
|         | <b>D</b> 0 |        | 0 0 0 fosc3 / 1 fosc1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | DAV        | -                   |
|         |            |        | rogrammable timer 4 clock control On Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0  | R/W        | -                   |
|         | 02         | PST42  | rogrammable timer 4 division ratio<br>ST42 PST41 PST40 (OSC3) (OSC1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0  | R/W        |                     |
|         |            |        | 1 1 1 fosc3 / 4096 fosc1 / 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |            |                     |
|         | D1         | PST41  | 1 1 0 fosc3 / 1024 fosc1 / 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0  | R/W        |                     |
|         |            |        | 1 0 1 fosc3 / 256 fosc1 / 32<br>1 0 0 fosc3 / 64 fosc1 / 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            |                     |
|         |            | DOT 10 | 0 1 1 fosc3 / 32 fosc1 / 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |            |                     |
|         |            | PST40  | 0 1 0 fosc3 / 8 fosc1 / 4<br>0 0 1 fosc3 / 2 fosc1 / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W        |                     |
|         |            |        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |            |                     |
| 00FF25  | D7         | PRPRT7 | rogrammable timer 7 clock control On Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0  | R/W        |                     |
|         | D6         | PST72  | rogrammable timer 7 division ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0  | R/W        |                     |
|         |            |        | $\frac{\text{ST72}}{1} \frac{\text{PST71}}{1} \frac{\text{PST70}}{1} \frac{(\text{OSC3})}{683} \frac{(\text{OSC1})}{683}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |                     |
|         | D5         | PST71  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0  | R/W        |                     |
|         |            | 10171  | 1 0 1 fosc3 / 256 fosc1 / 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 10, 11     |                     |
|         |            |        | 1 0 0 fosc3 / 64 fosc1 / 16<br>0 1 1 fosc3 / 32 fosc1 / 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |                     |
|         | D4         | PST70  | 0 1 0 fosc3 / 8 fosc1 / 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0  | R/W        |                     |
|         |            |        | 0 0 1 fosc3 / 2 fosc1 / 2<br>0 0 0 fosc3 / 1 fosc1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |            |                     |
|         | 20         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0  | D/W        | -                   |
|         |            | PST62  | rogrammable timer 6 clock control On Off<br>rogrammable timer 6 division ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  | R/W<br>R/W | -                   |
|         |            | F3102  | ST62 PST61 PST60 (OSC3) (OSC1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  | K/W        |                     |
|         |            |        | 1 1 1 fosc3 / 4096 fosc1 / 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |            |                     |
|         | D1         | PST61  | 1 1 0 fosc3 / 1024 fosc1 / 64<br>1 0 1 fosc3 / 256 fosc1 / 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0  | R/W        |                     |
|         |            |        | 1 	 0 	 1 	 10557250 	 10557752 	 10557752 	 1 	 0 	 0 	 10553764 	 10557716 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 10557752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 	 1057752 |    |            |                     |
|         |            | PST60  | 0 1 1 fosc3 / 32 fosc1 / 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |            |                     |
|         |            | P3160  | 0 1 0 fosc3 / 8 fosc1 / 4<br>0 0 1 fosc3 / 2 fosc1 / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W        |                     |
|         |            |        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |            |                     |
| 00FF27  | D7         | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -  | R          | Constantly "0" when |
|         | D6         | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _  | R          | being read          |
|         | D5         | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -  | R          | ]                   |
|         | D4         | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -  | R          |                     |
|         | D3         | PRTF7  | rogrammable timer 7 source clock selection fosci fosci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W        |                     |
|         | D2         | PRTF6  | rogrammable timer 6 source clock selection fosci fosci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W        | ]                   |
|         | D1         | PRTF5  | rogrammable timer 5 source clock selection fosci fosci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W        | ]                   |
|         | D0         | PRTF4  | rogrammable timer 4 source clock selection fosci fosci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W        |                     |
|         |            |        | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |            |                     |

Table 3.5.1(f) I/O Memory map (00FF23H–00FF27H)

| Address | Bit | Name     | Table 3.5.1(g)         I/O Memory map (6           Function | 1              | 0              | SR | R/W   | Comment             |
|---------|-----|----------|-------------------------------------------------------------|----------------|----------------|----|-------|---------------------|
| 00FF30  | D7  | MODE16_A | PTM0-1 8/16-bit mode selection                              | 16-bit x 1     | 8-bit x 2      | 0  | R/W   |                     |
|         | D6  | PTNREN_A | External clock 0 noise rejector selection                   | Enable         | Disable        | 0  | R/W   |                     |
|         | D5  | _        | _                                                           | -              | _              | 0  | R     | "0" when being read |
|         | D4  | _        | R/W register                                                | 1              | 0              | 0  | R/W   | Reserved register   |
|         | D3  | PTOUT0   | PTM0 clock output control                                   | On             | Off            | 0  | R/W   |                     |
|         | D2  | PTRUN0   | PTM0 Run/Stop control                                       | Run            | Stop           | 0  | R/W   |                     |
|         | D1  | PSET0    | PTM0 preset                                                 | Preset         | No operation   | 0  | W     | "0" when being read |
|         | D0  | CKSEL0   | PTM0 input clock selection                                  | External clock | Internal clock | 0  | R/W   |                     |
| 00FF31  | D7  | -        | -                                                           | -              | _              | 0  | R     | Constantly "0" when |
|         | D6  | -        | -                                                           | -              | -              | 0  | R     | being read          |
|         | D5  | -        | -                                                           | -              | -              | 0  | R     |                     |
|         | D4  | -        | R/W register                                                | 1              | 0              | 0  | R/W   | Reserved register   |
|         | D3  | PTOUT1   | PTM1 clock output control                                   | On             | Off            | 0  | R/W   |                     |
|         | D2  | PTRUN1   | PTM1 Run/Stop control                                       | Run            | Stop           | 0  | R/W   |                     |
|         | D1  | PSET1    | PTM1 preset                                                 | Preset         | No operation   | 0  | W     | "0" when being read |
|         | D0  | CKSEL1   | PTM1 input clock selection                                  | External clock | Internal clock | 0  | R/W   |                     |
| 00FF32  | D7  | RDR07    | PTM0 reload data D7 (MSB)                                   |                |                |    |       |                     |
|         | D6  | RDR06    | PTM0 reload data D6                                         |                |                |    |       |                     |
|         | D5  | RDR05    | PTM0 reload data D5                                         |                |                |    |       |                     |
|         | D4  | RDR04    | PTM0 reload data D4                                         |                | gh Low         | 1  | DAV   |                     |
|         | D3  | RDR03    | PTM0 reload data D3                                         | High           |                | 1  | R/W   |                     |
| D1      | D2  | RDR02    | PTM0 reload data D2                                         |                |                |    |       |                     |
|         | D1  | RDR01    | PTM0 reload data D1                                         |                |                |    |       |                     |
|         | D0  | RDR00    | PTM0 reload data D0 (LSB)                                   |                |                |    |       |                     |
| 00FF33  | D7  | RDR17    | PTM1 reload data D7 (MSB)                                   |                |                |    |       |                     |
|         | D6  | RDR16    | PTM1 reload data D6                                         |                |                |    |       |                     |
|         | D5  | RDR15    | PTM1 reload data D5                                         |                |                |    |       |                     |
|         | D4  | RDR14    | PTM1 reload data D4                                         | II. 1          | T              | 1  | DAV   |                     |
|         | D3  | RDR13    | PTM1 reload data D3                                         | High           | Low            | 1  | R/W   |                     |
|         | D2  | RDR12    | PTM1 reload data D2                                         |                |                |    |       |                     |
|         | D1  | RDR11    | PTM1 reload data D1                                         |                |                |    |       |                     |
|         | D0  | RDR10    | PTM1 reload data D0 (LSB)                                   |                |                |    |       |                     |
| 00FF34  | D7  | CDR07    | PTM0 compare data D7 (MSB)                                  |                |                |    |       |                     |
|         | D6  | CDR06    | PTM0 compare data D6                                        |                |                |    |       |                     |
|         |     | CDR05    | PTM0 compare data D5                                        |                |                |    |       |                     |
|         | D4  | CDR04    | PTM0 compare data D4                                        | High           | Low            | 0  | R/W   |                     |
|         |     | CDR03    | PTM0 compare data D3                                        | Ingi           | LUW            |    |       |                     |
|         | D2  | CDR02    | PTM0 compare data D2                                        |                |                |    |       |                     |
|         | D1  | CDR01    | PTM0 compare data D1                                        |                |                |    |       |                     |
|         | D0  | CDR00    | PTM0 compare data D0 (LSB)                                  |                |                |    |       |                     |
| 00FF35  | D7  | CDR17    | PTM1 compare data D7 (MSB)                                  |                |                |    |       |                     |
|         |     | CDR16    | PTM1 compare data D6                                        |                |                |    |       |                     |
|         |     | CDR15    | PTM1 compare data D5                                        |                |                |    |       |                     |
|         | D4  | CDR14    | PTM1 compare data D4                                        | High           | Low            | 0  | R/W   |                     |
|         |     | CDR13    | PTM1 compare data D3                                        | 111511         | Low            |    | 10,11 |                     |
|         |     | CDR12    | PTM1 compare data D2                                        |                |                |    |       |                     |
|         |     | CDR11    | PTM1 compare data D1                                        |                |                |    |       |                     |
|         | D0  | CDR10    | PTM1 compare data D0 (LSB)                                  |                |                |    |       |                     |

*Table 3.5.1(g) I/O Memory map* (00FF30H–00FF35H)

| Address | Bit | Name     | Function                                  | 1              | 0              | SR | R/W | Comment             |
|---------|-----|----------|-------------------------------------------|----------------|----------------|----|-----|---------------------|
| 00FF36  | D7  | PTM07    | PTM0 data D7 (MSB)                        |                |                |    |     |                     |
|         | D6  | PTM06    | PTM0 data D6                              |                |                |    |     |                     |
|         | D5  | PTM05    | PTM0 data D5                              |                |                |    |     |                     |
|         | D4  | PTM04    | PTM0 data D4                              | XX: 1          | Ţ              | 1  | D   |                     |
|         | D3  | PTM03    | PTM0 data D3                              | High           | Low            | 1  | R   |                     |
|         | D2  | PTM02    | PTM0 data D2                              |                |                |    |     |                     |
|         | D1  | PTM01    | PTM0 data D1                              |                |                |    |     |                     |
|         | D0  | PTM00    | PTM0 data D0 (LSB)                        |                |                |    |     |                     |
| 00FF37  | D7  | PTM17    | PTM1 data D7 (MSB)                        |                |                |    |     |                     |
|         | D6  | PTM16    | PTM1 data D6                              |                |                |    |     |                     |
|         | D5  | PTM15    | PTM1 data D5                              |                |                |    |     |                     |
|         | D4  | PTM14    | PTM1 data D4                              | TT:-1          | T              | 1  | R   |                     |
|         | D3  | PTM13    | PTM1 data D3                              | High           | Low            | 1  | к   |                     |
|         | D2  | PTM12    | PTM1 data D2                              |                |                |    |     |                     |
|         | D1  | PTM11    | PTM1 data D1                              |                |                |    |     |                     |
|         | D0  | PTM10    | PTM1 data D0 (LSB)                        |                |                |    |     |                     |
| 00FF38  | D7  | MODE16_B | PTM2-3 8/16-bit mode selection            | 16-bit x 1     | 8-bit x 2      | 0  | R/W |                     |
|         | D6  | PTNREN_B | External clock 1 noise rejector selection | Enable         | Disable        | 0  | R/W |                     |
|         | D5  | -        | _                                         | _              | -              | 0  | R   | "0" when being read |
|         | D4  | RPTOUT2  | PTM2 inverted clock output control        | On             | Off            | 0  | R/W |                     |
|         | D3  | PTOUT2   | PTM2 clock output control                 | On             | Off            | 0  | R/W |                     |
| F       | D2  | PTRUN2   | PTM2 Run/Stop control                     | Run            | Stop           | 0  | R/W |                     |
|         | D1  | PSET2    | PTM2 preset                               | Preset         | No operation   | 0  | W   | "0" when being read |
|         | D0  | CKSEL2   | PTM2 input clock selection                | External clock | Internal clock | 0  | R/W |                     |
| 00FF39  | D7  | -        | _                                         | _              | -              | 0  | R   | Constantly "0" when |
|         | D6  | -        | _                                         | _              | -              | 0  | R   | being read          |
|         | D5  | -        | _                                         | _              | -              | 0  | R   |                     |
|         | D4  | RPTOUT3  | PTM3 inverted clock output control        | On             | Off            | 0  | R/W |                     |
|         | D3  | PTOUT3   | PTM3 clock output control                 | On             | Off            | 0  | R/W |                     |
|         | D2  | PTRUN3   | PTM3 Run/Stop control                     | Run            | Stop           | 0  | R/W |                     |
|         | D1  | PSET3    | PTM3 preset                               | Preset         | No operation   | 0  | W   | "0" when being read |
|         | D0  | CKSEL3   | PTM3 input clock selection                | External clock | Internal clock | 0  | R/W |                     |
| 00FF3A  | D7  | RDR27    | PTM2 reload data D7 (MSB)                 |                |                |    |     |                     |
|         | D6  | RDR26    | PTM2 reload data D6                       |                |                |    |     |                     |
|         | D5  | RDR25    | PTM2 reload data D5                       |                |                |    |     |                     |
|         | D4  | RDR24    | PTM2 reload data D4                       | Uich           | Low            | 1  | D/W |                     |
|         | D3  | RDR23    | PTM2 reload data D3                       | High           | Low            | 1  | R/W |                     |
|         | D2  | RDR22    | PTM2 reload data D2                       |                |                |    |     |                     |
|         | D1  | RDR21    | PTM2 reload data D1                       |                |                |    |     |                     |
|         | D0  | RDR20    | PTM2 reload data D0 (LSB)                 |                |                |    |     |                     |
| 00FF3B  | D7  | RDR37    | PTM3 reload data D7 (MSB)                 |                |                |    |     |                     |
|         | D6  | RDR36    | PTM3 reload data D6                       |                |                |    |     |                     |
|         | D5  | RDR35    | PTM3 reload data D5                       |                |                |    |     |                     |
|         | D4  | RDR34    | PTM3 reload data D4                       | 112-5          | Larr           | 1  | R/W |                     |
|         | D3  | RDR33    | PTM3 reload data D3                       | High           | Low            | 1  | K/W |                     |
|         | D2  | RDR32    | PTM3 reload data D2                       |                |                |    |     |                     |
|         | D1  | RDR31    | PTM3 reload data D1                       |                |                |    |     |                     |
|         | DO  | RDR30    | PTM3 reload data D0 (LSB)                 |                |                |    |     |                     |

Table 3.5.1(h) I/O Memory map (00FF36H–00FF3BH)

| Address | Bit | Name  | Table 3.5.1(i) I/O Memory map (00<br>Function      | $\frac{DFFSCH}{1}$ | 0            | SR | R/W | Comment             |
|---------|-----|-------|----------------------------------------------------|--------------------|--------------|----|-----|---------------------|
| 00FF3C  |     | CDR27 | PTM2 compare data D7 (MSB)                         | •                  |              |    |     | Common              |
| 001130  |     | CDR26 | PTM2 compare data D7 (MSD)                         |                    |              |    |     |                     |
|         |     | CDR25 | PTM2 compare data D5                               |                    |              |    |     |                     |
|         |     | CDR24 | PTM2 compare data D5                               |                    |              |    |     |                     |
|         |     | CDR23 | PTM2 compare data D4<br>PTM2 compare data D3       | High               | Low          | 0  | R/W |                     |
|         |     | CDR23 |                                                    |                    |              |    |     |                     |
|         |     | CDR22 | PTM2 compare data D2                               |                    |              |    |     |                     |
|         |     | CDR20 | PTM2 compare data D1<br>PTM2 compare data D0 (LSB) |                    |              |    |     |                     |
| 00FF3D  |     | CDR20 | · · · ·                                            |                    |              |    |     |                     |
| 006630  |     | CDR37 | PTM3 compare data D7 (MSB)<br>PTM3 compare data D6 |                    |              |    |     |                     |
|         |     |       |                                                    |                    |              |    |     |                     |
|         |     | CDR35 | PTM3 compare data D5                               |                    |              |    |     |                     |
|         |     | CDR34 | PTM3 compare data D4                               | High               | Low          | 0  | R/W |                     |
|         |     | CDR33 | PTM3 compare data D3                               |                    |              |    |     |                     |
|         |     | CDR32 | PTM3 compare data D2                               |                    |              |    |     |                     |
|         |     | CDR31 | PTM3 compare data D1                               |                    |              |    |     |                     |
| 005505  |     | CDR30 | PTM3 compare data D0 (LSB)                         |                    |              |    |     |                     |
| 00FF3E  |     | PTM27 | PTM2 data D7 (MSB)                                 |                    |              |    |     |                     |
|         |     | PTM26 | PTM2 data D6                                       |                    |              |    |     |                     |
|         |     | PTM25 | PTM2 data D5                                       |                    |              |    |     |                     |
|         |     | PTM24 | PTM2 data D4                                       | High               | Low          | 1  | R   |                     |
|         |     | PTM23 | PTM2 data D3                                       |                    |              |    |     |                     |
|         |     | PTM22 | PTM2 data D2                                       |                    |              |    |     |                     |
|         |     | PTM21 | PTM2 data D1                                       |                    |              |    |     |                     |
|         |     | PTM20 | PTM2 data D0 (LSB)                                 |                    |              |    |     |                     |
| 00FF3F  |     | PTM37 | PTM3 data D7 (MSB)                                 |                    |              |    |     |                     |
|         |     | PTM36 | PTM3 data D6                                       |                    |              |    |     |                     |
|         |     | PTM35 | PTM3 data D5                                       |                    |              |    |     |                     |
|         |     | PTM34 | PTM3 data D4                                       | High               | Low          | 1  | R   |                     |
|         |     | PTM33 | PTM3 data D3                                       | U                  |              |    |     |                     |
|         |     | PTM32 | PTM3 data D2                                       |                    |              |    |     |                     |
|         |     | PTM31 | PTM3 data D1                                       |                    |              |    |     |                     |
|         |     | PTM30 | PTM3 data D0 (LSB)                                 |                    |              |    |     |                     |
| 00FF40  | D7  | -     | -                                                  | -                  | -            | 0  | R   | Constantly "0" when |
|         | D6  | -     | -                                                  | -                  | -            | 0  | R   | being read          |
|         | D5  | -     | -                                                  | -                  | -            | 0  | R   |                     |
|         | D4  | -     | -                                                  | -                  | -            | 0  | R   |                     |
|         | D3  |       | -                                                  | -                  | -            | 0  | R   |                     |
|         | D2  |       | -                                                  | -                  | -            | 0  | R   |                     |
|         |     | TMRST | Clock timer reset                                  | Reset              | No operation | _  | W   |                     |
|         |     | TMRUN | Clock timer Run/Stop control                       | Run                | Stop         | 0  | R/W |                     |
| 00FF41  |     | TMD7  | Clock timer data 1 Hz                              |                    |              |    |     |                     |
|         |     | TMD6  | Clock timer data 2 Hz                              |                    |              |    |     |                     |
|         | D5  | TMD5  | Clock timer data 4 Hz                              |                    |              |    |     |                     |
|         | D4  | TMD4  | Clock timer data 8 Hz                              | High               | Low          | 0  | R   |                     |
|         | D3  | TMD3  | Clock timer data 16 Hz                             | High               | Low          |    |     |                     |
|         | D2  | TMD2  | Clock timer data 32 Hz                             |                    |              |    |     |                     |
|         | D1  | TMD1  | Clock timer data 64 Hz                             |                    |              |    |     |                     |
|         | D0  | TMD0  | Clock timer data 128 Hz                            |                    |              |    |     |                     |

 Table 3.5.1(i)
 I/O Memory map (00FF3CH-00FF41H)

| Address | Bit | Name   | Function                                     | 1           | 0            | SR | R/W | Comment               |
|---------|-----|--------|----------------------------------------------|-------------|--------------|----|-----|-----------------------|
| 00FF48  |     | STPB0  | SIF0 stop bit selection                      | 2 bits      | 1 bit        | 0  | R/W |                       |
|         | D6  | EPR0   | SIF0 parity enable register                  | With parity | Non parity   | 0  | R/W |                       |
|         | D5  | PMD0   | SIF0 parity mode selection                   | Odd         | Even         | 0  | R/W |                       |
|         | D4  | SCS01  | SIF0 clock source selection                  |             |              | 0  | R/W | In the clock synchro- |
|         |     |        | SCS01 SCS00 Clock source                     |             |              |    |     | nous slave mode,      |
|         |     |        | 1 1 Programmable timer                       |             |              |    |     | external clock is     |
|         | D3  | SCS00  | 1 0 fosc3 / 4                                |             |              | 0  | R/W | selected.             |
|         |     |        | 0 1 fosc3 / 8                                |             |              |    |     |                       |
|         |     |        | 0 0 fosc3 / 16                               |             |              |    |     |                       |
|         | D2  | SMD01  | SIF0 mode selection                          |             |              | 0  | R/W |                       |
|         |     |        | SMD01 SMD00 Mode                             |             |              |    |     |                       |
|         |     |        | 1 1 Asynchronous 8-bit                       |             |              |    |     |                       |
|         | D1  | SMD00  | 1 0 Asynchronous 7-bit                       |             |              | 0  | R/W |                       |
|         |     |        | 0 1 Clock synchronous slave                  |             |              |    |     |                       |
|         |     |        | 0 0 Clock synchronous master                 |             |              |    |     |                       |
|         | D0  | ESIF0  | SIF0 enable register                         | Serial I/F  | I/O port     | 0  | R/W |                       |
| 00FF49  | D7  | SDP0   | SIF0 data input/output permutation selection | MSB first   | LSB first    | 0  | R/W |                       |
|         | D6  | FER0   | SIF0 framing error flag R                    | Error       | No error     | 0  | R/W | Only for              |
|         |     |        | W                                            | Reset (0)   | No operation |    |     | asynchronous mode     |
|         | D5  | PER0   | SIF0 parity error flag R                     | Error       | No error     | 0  | R/W |                       |
|         |     |        | W                                            | Reset (0)   | No operation |    |     | _                     |
|         | D4  | OER0   | SIF0 overrun error flag R                    | Error       | No error     | 0  | R/W |                       |
|         |     |        | W                                            | Reset (0)   | No operation |    |     |                       |
|         | D3  | RXTRG0 | SIF0 receive trigger/status                  | Run         | Stop         | 0  | R/W |                       |
|         |     |        | W                                            | Trigger     | No operation |    |     | -                     |
|         | D2  | RXEN0  | SIF0 receive enable                          | Enable      | Disable      | 0  | R/W | -                     |
|         | D1  | TXTRG0 | SIF0 transmit trigger/status                 | Run         | Stop         | 0  | R/W |                       |
|         | _   |        | W                                            | Trigger     | No operation |    |     | -                     |
|         | D0  | TXEN0  | SIF0 transmit enable                         | Enable      | Disable      | 0  | R/W |                       |
| 00FF4A  |     | TXD07  | SIF0 transmit data D7 (MSB)                  |             |              |    |     |                       |
|         |     | TXD06  | SIF0 transmit data D6                        |             |              |    |     |                       |
|         |     | TXD05  | SIF0 transmit data D5                        |             |              |    |     |                       |
|         |     | TXD04  | SIF0 transmit data D4                        | High        | Low          | х  | R/W |                       |
|         |     | TXD03  | SIF0 transmit data D3                        |             |              |    |     |                       |
|         |     | TXD02  | SIF0 transmit data D2                        |             |              |    |     |                       |
|         |     | TXD01  | SIF0 transmit data D1                        |             |              |    |     |                       |
| 00FF4D  |     | TXD00  | SIF0 transmit data D0 (LSB)                  |             |              |    |     |                       |
| 00FF4B  |     | RXD07  | SIF0 receive data D7 (MSB)                   |             |              |    |     |                       |
|         |     | RXD06  | SIF0 receive data D6                         |             |              |    |     |                       |
|         |     | RXD05  | SIF0 receive data D5                         |             |              |    |     |                       |
|         |     | RXD04  | SIF0 receive data D4                         | High        | Low          | х  | R   |                       |
|         |     | RXD03  | SIF0 receive data D3                         |             |              |    |     |                       |
|         |     | RXD02  | SIF0 receive data D2                         |             |              |    |     |                       |
|         |     | RXD01  | SIF0 receive data D1                         |             |              |    |     |                       |
|         | υU  | RXD00  | SIF0 receive data D0 (LSB)                   |             |              |    |     |                       |

Table 3.5.1(j) I/O Memory map (00FF48H–00FF4BH)

| ·       |     |        | Table 3.5.1(k) I/O Memory ma                 | ıp (0 | 1           | )0FF4FH)     |    |     | r                     |
|---------|-----|--------|----------------------------------------------|-------|-------------|--------------|----|-----|-----------------------|
| Address | Bit | Name   | Function                                     |       | 1           | 0            | SR | R/W | Comment               |
| 00FF4C  | D7  | STPB1  | SIF1 stop bit selection                      |       | 2 bits      | 1 bit        | 0  | R/W | Only for              |
|         | D6  | EPR1   | SIF1 parity enable register                  |       | With parity | Non parity   | 0  | R/W | asynchronous mode     |
|         | D5  | PMD1   | SIF1 parity mode selection                   |       | Odd         | Even         | 0  | R/W |                       |
|         | D4  | SCS11  | SIF1 clock source selection                  |       |             |              | 0  | R/W | In the clock synchro- |
|         |     |        | SCS11 SCS10 Clock source                     |       |             |              |    |     | nous slave mode,      |
|         |     |        | 1 1 Programmable timer                       |       |             |              |    |     | external clock is     |
|         | D3  | SCS10  | 1 0 fosc3 / 4                                |       |             |              | 0  | R/W | selected.             |
|         |     |        | 0 1 fosc3 / 8                                |       |             |              |    |     |                       |
|         |     |        | 0 0 fosc3 / 16                               |       |             |              |    |     |                       |
|         | D2  | SMD11  | SIF1 mode selection                          |       |             |              | 0  | R/W |                       |
|         |     |        | SMD11 SMD10 Mode                             |       |             |              |    |     |                       |
|         |     |        | 1 1 Asynchronous 8-bit                       |       |             |              |    |     |                       |
|         | D1  | SMD10  | 1 0 Asynchronous 7-bit                       |       |             |              | 0  | R/W |                       |
|         |     |        | 0 1 Clock synchronous sla                    | ve    |             |              |    |     |                       |
|         |     |        | 0 0 Clock synchronous ma                     | ster  |             |              |    |     |                       |
|         | D0  | ESIF1  | SIF1 enable register                         |       | Serial I/F  | I/O port     | 0  | R/W |                       |
| 00FF4D  |     | SDP1   | SIF1 data input/output permutation selection |       | MSB first   | LSB first    | 0  | R/W |                       |
|         | D6  | FER1   | SIF1 framing error flag                      | R     | Error       | No error     | 0  | R/W | Only for              |
|         |     |        |                                              | W     | Reset (0)   | No operation |    |     | asynchronous mode     |
|         | D5  | PER1   | SIF1 parity error flag                       | R     | Error       | No error     | 0  | R/W |                       |
|         |     |        |                                              | W     | Reset (0)   | No operation |    |     |                       |
|         | D4  | OER1   | SIF1 overrun error flag                      | R     | Error       | No error     | 0  | R/W |                       |
|         |     |        |                                              | W     | Reset (0)   | No operation |    |     |                       |
|         | D3  | RXTRG1 | SIF1 receive trigger/status                  | R     | Run         | Stop         | 0  | R/W |                       |
|         |     |        |                                              | W     | Trigger     | No operation |    |     |                       |
|         |     | RXEN1  | SIF1 receive enable                          |       | Enable      | Disable      | 0  | R/W |                       |
|         | D1  | IXIRG1 | SIF1 transmit trigger/status                 | R     | Run         | Stop         | 0  | R/W |                       |
|         |     |        |                                              | W     | Trigger     | No operation | -  |     |                       |
|         |     | TXEN1  | SIF1 transmit enable                         |       | Enable      | Disable      | 0  | R/W |                       |
| 00FF4E  |     | TXD17  | SIF1 transmit data D7 (MSB)                  |       |             |              |    |     |                       |
|         |     | TXD16  | SIF1 transmit data D6                        |       |             |              |    |     |                       |
|         |     | TXD15  | SIF1 transmit data D5                        |       |             |              |    |     |                       |
|         |     | TXD14  | SIF1 transmit data D4                        |       | High        | Low          | Х  | R/W |                       |
|         |     | TXD13  | SIF1 transmit data D3                        |       |             |              |    |     |                       |
|         |     | TXD12  | SIF1 transmit data D2                        |       |             |              |    |     |                       |
|         |     | TXD11  | SIF1 transmit data D1                        |       |             |              |    |     |                       |
| 005545  |     | TXD10  | SIF1 transmit data D0 (LSB)                  |       |             |              |    |     |                       |
| 00FF4F  |     | RXD17  | SIF1 receive data D7 (MSB)                   |       |             |              |    |     |                       |
|         |     | RXD16  | SIF1 receive data D6                         |       |             |              |    |     |                       |
|         |     | RXD15  | SIF1 receive data D5                         |       |             |              |    |     |                       |
|         |     | RXD14  | SIF1 receive data D4                         |       | High        | Low          | Х  | R   |                       |
|         |     | RXD13  | SIF1 receive data D3                         |       |             |              |    |     |                       |
|         |     | RXD12  | SIF1 receive data D2                         |       |             |              |    |     |                       |
|         |     | RXD11  | SIF1 receive data D1                         |       |             |              |    |     |                       |
|         | 00  | RXD10  | SIF1 receive data D0 (LSB)                   |       |             |              |    |     |                       |

 Table 3.5.1(k)
 I/O Memory map (00FF4CH-00FF4FH)

| Address | Bit | Name   | Function                     | 1       | 0      | SR | R/W  | Comment |
|---------|-----|--------|------------------------------|---------|--------|----|------|---------|
| 00FF50  | D7  | IOC07  | P07 I/O control register     |         |        |    |      |         |
|         | D6  | IOC06  | P06 I/O control register     |         |        |    |      |         |
|         | D5  | IOC05  | P05 I/O control register     |         |        |    |      |         |
|         | D4  | IOC04  | P04 I/O control register     | Orteret | Turnut |    | D/W  |         |
|         | D3  | IOC03  | P03 I/O control register     | Output  | Input  | 0  | R/W  |         |
|         | D2  | IOC02  | P02 I/O control register     |         |        |    |      |         |
|         | D1  | IOC01  | P01 I/O control register     |         |        |    |      |         |
|         | D0  | IOC00  | P00 I/O control register     |         |        |    |      |         |
| 00FF51  | D7  | IOC17  | P17 I/O control register     |         |        |    |      |         |
|         | D6  | IOC16  | P16 I/O control register     |         |        |    |      |         |
|         | D5  | IOC15  | P15 I/O control register     |         |        |    |      |         |
|         | D4  | IOC14  | P14 I/O control register     | Outout  | Inmut  | 0  | R/W  |         |
|         | D3  | IOC13  | P13 I/O control register     | Output  | Input  |    | K/ W |         |
|         | D2  | IOC12  | P12 I/O control register     |         |        |    |      |         |
|         | D1  | IOC11  | P11 I/O control register     |         |        |    |      |         |
|         | D0  | IOC10  | P10 I/O control register     |         |        |    |      |         |
| 00FF52  | D7  | P07D   | P07 I/O port data            |         |        |    |      |         |
|         | D6  | P06D   | P06 I/O port data            |         |        |    |      |         |
|         | D5  | P05D   | P05 I/O port data            |         |        |    |      |         |
|         | D4  | P04D   | P04 I/O port data            | High    | Low    | 1  | R/W  |         |
|         | D3  | P03D   | P03 I/O port data            | riigii  | LOW    |    | K/ W |         |
|         | D2  | P02D   | P02 I/O port data            |         |        |    |      |         |
|         | D1  | P01D   | P01 I/O port data            |         |        |    |      |         |
|         | D0  | P00D   | P00 I/O port data            |         |        |    |      |         |
| 00FF53  | D7  | P17D   | P17 I/O port data            |         |        |    |      |         |
|         | D6  | P16D   | P16 I/O port data            |         |        |    |      |         |
|         | D5  | P15D   | P15 I/O port data            |         |        |    |      |         |
|         | D4  | P14D   | P14 I/O port data            | High    | Low    | 1  | R/W  |         |
|         | D3  | P13D   | P13 I/O port data            | mgn     | Low    |    | 10   |         |
|         | D2  | P12D   | P12 I/O port data            |         |        |    |      |         |
|         | D1  | P11D   | P11 I/O port data            |         |        |    |      |         |
|         |     | P10D   | P10 I/O port data            |         |        |    |      |         |
| 00FF54  |     |        | P07 pull-up control register |         |        |    |      |         |
|         |     |        | P06 pull-up control register |         |        |    |      |         |
|         |     |        | P05 pull-up control register |         |        |    |      |         |
|         |     |        | P04 pull-up control register | On      | Off    | 1  | R/W  |         |
|         |     |        | P03 pull-up control register |         |        |    |      |         |
|         |     |        | P02 pull-up control register |         |        |    |      |         |
|         |     |        | P01 pull-up control register |         |        |    |      |         |
|         |     |        | P00 pull-up control register |         |        |    |      |         |
| 00FF55  |     |        | P17 pull-up control register |         |        |    |      |         |
|         |     |        | P16 pull-up control register |         |        |    |      |         |
|         |     |        | P15 pull-up control register |         |        |    |      |         |
|         |     |        | P14 pull-up control register | On      | Off    | 1  | R/W  |         |
|         |     |        | P13 pull-up control register |         |        |    |      |         |
|         |     |        | P12 pull-up control register |         |        |    |      |         |
|         |     |        | P11 pull-up control register |         |        |    |      |         |
|         | D0  | PULP10 | P10 pull-up control register |         |        |    |      |         |

*Table 3.5.1(l) I/O Memory map (00FF50H–00FF55H)* 

| Address | Bit | Name        | Function                                                   | 1          | 0         | SR | R/W  | Comment             |
|---------|-----|-------------|------------------------------------------------------------|------------|-----------|----|------|---------------------|
| 00FF60  | D7  | IOC27       | P27 I/O control register                                   |            |           |    |      |                     |
|         | D6  | IOC26       | P26 I/O control register                                   |            |           |    |      |                     |
|         | D5  | IOC25       | P25 I/O control register                                   |            |           |    |      |                     |
|         |     | IOC24       | P24 I/O control register                                   |            |           |    |      |                     |
|         |     | IOC23       | P23 I/O control register                                   | Output     | Input     | 0  | R/W  |                     |
|         |     | IOC22       | P22 I/O control register                                   |            |           |    |      |                     |
|         |     | IOC21       | P21 I/O control register                                   |            |           |    |      |                     |
|         |     | IOC20       | P20 I/O control register                                   |            |           |    |      |                     |
| 00FF62  |     | P27D        | P27 I/O port data                                          |            |           |    |      |                     |
|         |     | P26D        | P26 I/O port data                                          |            |           |    |      |                     |
|         |     | P25D        | P25 I/O port data                                          |            |           |    |      |                     |
|         |     | P24D        |                                                            |            |           |    |      |                     |
|         |     | P23D        | P24 I/O port data                                          | High       | Low       | 1  | R/W  |                     |
|         |     |             | P23 I/O port data                                          |            |           |    |      |                     |
|         |     | P22D        | P22 I/O port data                                          |            |           |    |      |                     |
|         |     | P21D        | P21 I/O port data                                          |            |           |    |      |                     |
|         |     | P20D        | P20 I/O port data                                          |            |           |    |      |                     |
| 00FF64  |     | PULP27      | P27 pull-up control register                               |            |           |    |      |                     |
|         |     |             | P26 pull-up control register                               |            |           |    |      |                     |
|         |     |             | P25 pull-up control register                               |            |           |    |      |                     |
|         |     |             | P24 pull-up control register                               | On         | Off       | 1  | R/W  |                     |
|         | D3  | PULP23      | P23 pull-up control register                               | Oli        | UII       | 1  |      |                     |
|         | D2  | PULP22      | P22 pull-up control register                               |            |           |    |      |                     |
|         | D1  | PULP21      | P21 pull-up control register                               |            |           |    |      |                     |
|         | D0  | PULP20      | P20 pull-up control register                               |            |           |    |      |                     |
| 00FF66  | D7  | PCP27       | P27 input comparison register                              |            |           |    |      |                     |
|         | D6  | PCP26       | P26 input comparison register                              |            |           |    |      |                     |
|         | D5  | PCP25       | P25 input comparison register                              | Interrupt  | Interrupt |    |      |                     |
|         | D4  | PCP24       | P24 input comparison register                              | occurred   | occurred  |    | DAV  |                     |
|         | D3  | PCP23       | P23 input comparison register                              | at falling | at rising | 1  | R/W  |                     |
|         | D2  | PCP22       | P22 input comparison register                              | edge       | edge      |    |      |                     |
|         | D1  | PCP21       | P21 input comparison register                              | -          | _         |    |      |                     |
|         |     | PCP20       | P20 input comparison register                              |            |           |    |      |                     |
| 00FF68  | D7  | _           | _                                                          | _          | _         | 0  | R    | "0" when being read |
|         | D6  | CTP22H      | P24–P27 port chattering-eliminate setup                    |            |           | 0  | R/W  |                     |
|         |     |             | (Input level check time) Check time                        |            |           |    |      |                     |
|         |     |             | CTP22H CTP21H CTP20H [sec]                                 |            |           | L  | L    |                     |
|         | D5  | CTP21H      | 1 1 1 4/fosc3<br>1 1 0 2/fosc3                             |            |           | 0  | R/W  |                     |
|         |     |             | 1 0 1 1/fosc3                                              |            |           |    |      |                     |
|         |     |             | 1 0 0 4096/fosc1<br>0 1 1 2048/fosc1                       |            |           |    |      |                     |
|         | D4  | CTP20H      | 0 1 0 512/fosci                                            |            |           | 0  | R/W  |                     |
|         |     |             | 0 0 1 128/fosc1<br>0 0 0 None                              |            |           |    |      |                     |
|         | D3  | _           |                                                            |            |           | 0  | R    | "0" when being read |
|         |     | –<br>CTP22L | P20–P23 port chattering-eliminate setup                    |            |           | 0  | R/W  | o when being read   |
|         |     | UTZZL       | (Input level check time) Check time                        |            |           |    | IV W |                     |
|         |     |             | CTP22L CTP21L CTP20L [sec]                                 |            |           |    |      |                     |
|         | D1  | CTP21L      | $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{4}{1000}$ |            | +         | 0  | R/W  |                     |
|         |     |             | 1 1 0 2/fosc3<br>1 0 1 1/fosc3                             |            |           |    |      |                     |
|         | L   |             | 1 0 0 4096/fosc1                                           |            |           | L  |      |                     |
|         | D0  | CTP20L      | 0 1 1 2048/fosci<br>0 1 0 512/fosci                        |            |           | 0  | R/W  |                     |
|         |     |             | 0 0 1 128/fosci                                            |            |           |    |      |                     |
|         |     |             | 0 0 0 None                                                 |            |           |    |      |                     |

*Table 3.5.1(m) I/O Memory map* (00FF60H–00FF68H)

| Address | Bit                                    | Name                                                 | Table 3.5.1(n)         I/O Memory map (0           Function                                                                                  | 1         | 0          | SR | R/W | Comment             |
|---------|----------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|----|-----|---------------------|
| 00FF70  | D7                                     | HZR07                                                | R07 high impedance control                                                                                                                   |           |            |    |     |                     |
| -       |                                        | HZR06                                                | R06 high impedance control                                                                                                                   |           |            |    |     |                     |
|         |                                        | HZR05                                                | R05 high impedance control                                                                                                                   |           |            |    |     |                     |
|         |                                        | HZR04                                                | R04 high impedance control                                                                                                                   | High      | Comple-    |    |     |                     |
|         |                                        | HZR03                                                | R03 high impedance control                                                                                                                   | impedance | mentary    | 0  | R/W |                     |
|         |                                        | HZR02                                                | R02 high impedance control                                                                                                                   |           |            |    |     |                     |
|         |                                        | HZR01                                                | R01 high impedance control                                                                                                                   |           |            |    |     |                     |
|         |                                        | HZR00                                                | R00 high impedance control                                                                                                                   |           |            |    |     |                     |
| 00FF71  |                                        | HZR17                                                | R17 high impedance control                                                                                                                   |           |            |    |     |                     |
|         |                                        | HZR16                                                | R16 high impedance control                                                                                                                   |           |            |    |     |                     |
|         |                                        | HZR15                                                | R15 high impedance control                                                                                                                   |           |            |    |     |                     |
|         |                                        | HZR14                                                | R14 high impedance control                                                                                                                   | High      | Comple-    |    |     |                     |
|         |                                        | HZR13                                                | R13 high impedance control                                                                                                                   | impedance | mentary    | 0  | R/W |                     |
|         |                                        | HZR12                                                | R12 high impedance control                                                                                                                   | impedance | lineinairy |    |     |                     |
|         |                                        | HZR11                                                | R11 high impedance control                                                                                                                   |           |            |    |     |                     |
|         |                                        | HZR10                                                | R10 high impedance control                                                                                                                   |           |            |    |     |                     |
| 00FF72  | D7                                     | _                                                    |                                                                                                                                              | _         | _          | 0  | R   | Constantly "0" when |
| 001112  | D6                                     | _                                                    | _                                                                                                                                            | _         | _          | 0  | R   | being read          |
|         |                                        | HZR25                                                | R25 high impedance control                                                                                                                   |           |            |    |     | Joing Toud          |
|         |                                        | HZR24                                                | R24 high impedance control                                                                                                                   |           |            |    |     |                     |
|         |                                        | HZR23                                                | R23 high impedance control                                                                                                                   | High      | Comple-    |    |     |                     |
| -       |                                        | HZR22                                                | R22 high impedance control                                                                                                                   | impedance | mentary    | 0  | R/W |                     |
|         |                                        | HZR21                                                | R21 high impedance control                                                                                                                   | impedance | mentary    |    |     |                     |
|         |                                        | HZR20                                                | R20 high impedance control                                                                                                                   |           |            |    |     |                     |
| 00FF73  | D7                                     | _                                                    | _                                                                                                                                            | _         | _          | 0  | R   | Constantly "0" when |
|         | D6                                     | _                                                    | _                                                                                                                                            | _         | _          | 0  | R   | being read          |
|         | D5                                     | _                                                    |                                                                                                                                              | _         | _          | 0  | R   |                     |
|         | D4                                     | _                                                    |                                                                                                                                              | _         | _          | 0  | R   |                     |
|         |                                        | HZR33                                                | R33 high impedance control                                                                                                                   |           |            | -  |     |                     |
|         |                                        | HZR32                                                | R32 high impedance control                                                                                                                   | High      | Comple-    |    |     |                     |
|         |                                        | HZR31                                                | R31 high impedance control                                                                                                                   | impedance | mentary    | 0  | R/W |                     |
|         |                                        | HZR30                                                | R30 high impedance control                                                                                                                   |           |            |    |     |                     |
| 00FF74  |                                        | R07D                                                 | R07 output port data                                                                                                                         |           |            |    |     |                     |
|         |                                        | R06D                                                 | R06 output port data                                                                                                                         |           |            |    |     |                     |
|         |                                        | R05D                                                 | R05 output port data                                                                                                                         |           |            |    |     |                     |
|         |                                        | R04D                                                 | R04 output port data                                                                                                                         |           |            |    |     |                     |
|         | D3                                     | R03D                                                 | R03 output port data                                                                                                                         | High      | Low        | 1  | R/W |                     |
|         |                                        | R02D                                                 | R02 output port data                                                                                                                         |           |            |    |     |                     |
| Ē       | +                                      |                                                      |                                                                                                                                              | 1         |            |    |     |                     |
|         | D1                                     | R01D                                                 | R01 output port data                                                                                                                         |           |            |    | 1   | 1                   |
|         |                                        | R01D<br>R00D                                         | R01 output port data<br>R00 output port data                                                                                                 |           |            |    |     |                     |
| 00FF75  | D0                                     | R00D                                                 | R00 output port data                                                                                                                         |           |            |    |     |                     |
| 00FF75  | D0<br>D7                               | R00D<br>R17D                                         | R00 output port data<br>R17 output port data                                                                                                 |           |            |    |     |                     |
| 00FF75  | D0<br>D7<br>D6                         | R00D<br>R17D<br>R16D                                 | R00 output port data<br>R17 output port data<br>R16 output port data                                                                         |           |            |    |     |                     |
| 00FF75  | D0<br>D7<br>D6<br>D5                   | R00D<br>R17D<br>R16D<br>R15D                         | R00 output port data<br>R17 output port data<br>R16 output port data<br>R15 output port data                                                 |           |            |    |     |                     |
| 00FF75  | D0<br>D7<br>D6<br>D5<br>D4             | R00D<br>R17D<br>R16D<br>R15D<br>R14D                 | R00 output port data<br>R17 output port data<br>R16 output port data<br>R15 output port data<br>R14 output port data                         | High      | Low        | 1  | R/W |                     |
| 00FF75  | D0<br>D7<br>D6<br>D5<br>D4<br>D3       | R00D<br>R17D<br>R16D<br>R15D<br>R15D<br>R14D<br>R13D | R00 output port data<br>R17 output port data<br>R16 output port data<br>R15 output port data<br>R14 output port data<br>R13 output port data | High      | Low        | 1  | R/W |                     |
| 00FF75  | D0<br>D7<br>D6<br>D5<br>D4<br>D3<br>D2 | R00D<br>R17D<br>R16D<br>R15D<br>R14D                 | R00 output port data<br>R17 output port data<br>R16 output port data<br>R15 output port data<br>R14 output port data                         | High      | Low        | 1  | R/W |                     |

Table 3.5.1(n) I/O Memory map (00FF70H–00FF75H)

| Address | Bit | Name    | Table 3.5.1(o) I/O Memory map (C<br>Function | 1              | 0 0            | SR | R/W   | Comment             |
|---------|-----|---------|----------------------------------------------|----------------|----------------|----|-------|---------------------|
| 00FF76  | D7  |         | R/W register                                 | 1              | 0              | 1  | R/W   |                     |
|         | D6  | _       | R/W register                                 | 1              | 0              | 1  | R/W   |                     |
|         |     | R25D    | R25 output port data                         | -              | -              | -  |       |                     |
|         |     | R24D    | R24 output port data                         |                |                |    |       |                     |
|         |     | R23D    | R23 output port data                         |                |                |    |       |                     |
|         |     | R22D    | R22 output port data                         | High           | Low            | 1  | R/W   |                     |
|         |     |         | R21 output port data                         |                |                |    |       |                     |
|         |     | R20D    | R20 output port data                         |                |                |    |       |                     |
| 00FF77  | D7  | _       | R/W register                                 | 1              | 0              | 1  | R/W   | Reserved register   |
| 001111  | D6  | _       | R/W register                                 | 1              | 0              | 1  | R/W   | iteserved register  |
|         | D5  | _       | R/W register                                 | 1              | 0              | 1  | R/W   | -                   |
|         | D4  | _       | R/W register                                 | 1              | 0              | 1  | R/W   | -                   |
|         |     | R33D    | R33 output port data                         | 1              | 0              | 1  |       |                     |
|         |     | R32D    | R32 output port data                         |                |                |    |       |                     |
|         |     | R31D    | R31 output port data                         | High           | Low            | 1  | R/W   |                     |
|         |     |         | R30 output port data                         |                |                |    |       |                     |
| 00FF80  |     |         | PTM4–5 8/16-bit mode selection               | 16-bit x 1     | 8-bit x 2      | 0  | R/W   |                     |
| 001100  |     |         | External clock 2 noise rejector selection    | Enable         | Disable        | 0  | R/W   | -                   |
|         | D5  | _       | _                                            | _              | _              | 0  | R     | "0" when being read |
|         | D4  | _       | R/W register                                 | 1              | 0              | 0  | R/W   |                     |
| -       | D3  |         | R/W register                                 | 1              | 0              | 0  | R/W   |                     |
|         | -   |         | PTM4 Run/Stop control                        | Run            | Stop           | 0  | R/W   |                     |
|         |     |         | PTM4 preset                                  | Preset         | No operation   | 0  | W     | "0" when being read |
| -       |     |         | PTM4 input clock selection                   |                | Internal clock | 0  | R/W   | o when being read   |
| 00FF81  | D7  | _       | _                                            | _              | _              | 0  | R     | Constantly "0" wher |
|         | D6  | _       | _                                            | _              | _              | 0  | R     | being read          |
|         | D5  | _       | _                                            | _              | _              | 0  | R     | comg roud           |
|         | D4  | _       | R/W register                                 | 1              | 0              | 0  | R/W   | Reserved register   |
|         | D3  | _       | R/W register                                 | 1              | 0              | 0  | R/W   |                     |
|         | -   |         | PTM5 Run/Stop control                        | Run            | Stop           | 0  | R/W   |                     |
|         |     |         | PTM5 preset                                  | Preset         | No operation   | 0  | W     | "0" when being read |
|         |     |         | PTM5 input clock selection                   |                | Internal clock | 0  | R/W   | o when being read   |
| 00FF82  |     |         | PTM4 reload data D7 (MSB)                    | External clock | Internal crock | 0  | 10 11 |                     |
| 001102  |     |         | PTM4 reload data D6                          |                |                |    |       |                     |
|         |     |         | PTM4 reload data D5                          |                |                |    |       |                     |
|         |     | RDR44   | PTM4 reload data D4                          |                |                |    |       |                     |
|         |     | RDR43   | PTM4 reload data D3                          | High           | Low            | 1  | R/W   |                     |
|         |     | RDR42   | PTM4 reload data D2                          |                |                |    |       |                     |
|         |     | RDR41   | PTM4 reload data D1                          |                |                |    |       |                     |
|         |     | RDR40   | PTM4 reload data D0 (LSB)                    |                |                |    |       |                     |
| 00FF83  |     | RDR57   | PTM5 reload data D7 (MSB)                    |                |                |    |       |                     |
|         |     | RDR56   | PTM5 reload data D6                          |                |                |    |       |                     |
|         |     | RDR55   | PTM5 reload data D5                          |                |                |    |       |                     |
|         |     | RDR54   | PTM5 reload data D5                          |                |                |    |       |                     |
|         |     | RDR53   | PTM5 reload data D3                          | High           | Low            | 1  | R/W   |                     |
|         |     | RDR52   | PTM5 reload data D2                          |                |                |    |       |                     |
|         |     | RDR52   | PTM5 reload data D1                          |                |                |    |       |                     |
|         |     | RDR50   |                                              |                |                |    |       |                     |
| C       | 00  | 1/01/30 | PTM5 reload data D0 (LSB)                    |                |                |    |       |                     |

*Table 3.5.1(o) I/O Memory map (00FF76H–00FF83H)* 

| Address | Bit | Name   | Table 3.5.1(p)       I/O Memory map (0         Function | 1              | 0              | SR | R/W | Comment                               |
|---------|-----|--------|---------------------------------------------------------|----------------|----------------|----|-----|---------------------------------------|
| 00FF84  | D7  | CDR47  | PTM4 compare data D7 (MSB)                              |                |                |    |     |                                       |
| 001104  |     | CDR46  | PTM4 compare data D6                                    |                |                |    |     |                                       |
|         |     | CDR45  | PTM4 compare data D5                                    |                |                | 0  | R/W |                                       |
|         |     | CDR44  | PTM4 compare data D4                                    |                | Low            |    |     |                                       |
|         |     | CDR43  | PTM4 compare data D3                                    | High           |                |    |     |                                       |
|         |     | CDR42  | PTM4 compare data D2                                    |                |                |    |     |                                       |
|         |     | CDR41  | PTM4 compare data D1                                    |                |                |    |     |                                       |
|         |     | CDR40  | PTM4 compare data D0 (LSB)                              |                |                |    |     |                                       |
| 00FF85  |     | CDR57  | PTM5 compare data D7 (MSB)                              |                |                |    |     |                                       |
|         |     | CDR56  | PTM5 compare data D6                                    |                |                |    |     |                                       |
|         |     | CDR55  | PTM5 compare data D5                                    |                |                |    |     |                                       |
|         |     | CDR54  | PTM5 compare data D4                                    |                |                |    |     |                                       |
|         |     | CDR53  | PTM5 compare data D3                                    | High           | Low            | 0  | R/W |                                       |
|         |     | CDR52  | PTM5 compare data D2                                    |                |                |    |     |                                       |
|         |     | CDR51  | PTM5 compare data D1                                    |                |                |    |     |                                       |
|         |     | CDR50  | PTM5 compare data D0 (LSB)                              |                |                |    |     |                                       |
| 00FF86  |     | PTM47  | PTM4 data D7 (MSB)                                      |                |                |    |     |                                       |
| 001100  |     | PTM46  | PTM4 data D6                                            |                |                |    |     |                                       |
|         |     | PTM45  | PTM4 data D5                                            |                |                |    |     |                                       |
|         |     | PTM44  | PTM4 data D4                                            |                |                |    |     |                                       |
|         |     | PTM43  | PTM4 data D4<br>PTM4 data D3                            | High           | Low            | 1  | R   |                                       |
|         |     | PTM43  | PTM4 data D2                                            |                |                |    |     |                                       |
|         |     | PTM41  | PTM4 data D2<br>PTM4 data D1                            |                |                |    |     |                                       |
|         |     | PTM40  | PTM4 data D0 (LSB)                                      |                |                |    |     |                                       |
| 00FF87  |     | PTM57  | PTM5 data D7 (MSB)                                      |                |                |    |     |                                       |
| 001107  |     | PTM56  | PTM5 data D6                                            |                |                |    |     |                                       |
|         |     | PTM55  | PTM5 data D5                                            |                |                |    |     |                                       |
|         |     | PTM54  | PTM5 data D4                                            |                |                |    |     |                                       |
|         |     | PTM53  | PTM5 data D3                                            | High           | Low            | 1  | R   |                                       |
|         |     | PTM52  | PTM5 data D2                                            |                |                |    |     |                                       |
|         |     | PTM51  | PTM5 data D1                                            |                |                |    |     |                                       |
|         |     | PTM50  | PTM5 data D0 (LSB)                                      |                |                |    |     |                                       |
| 00FF88  | -   |        | PTM6–7 8/16-bit mode selection                          | 16-bit x 1     | 8-bit x 2      | 0  | R/W |                                       |
| 001100  |     | _      | External clock 3 noise rejector selection               | Enable         | Disable        | 0  | R/W | -                                     |
|         | D5  | _      | _                                                       |                |                | 0  | R   | "0" when being read                   |
| -       | D4  | _      | R/W register                                            | 1              | 0              | 0  | _   | Reserved register                     |
|         | D3  | _      | R/W register                                            | 1              | 0              | 0  | R/W | Reserved register                     |
|         |     |        | PTM6 Run/Stop control                                   | Run            | Stop           | 0  | R/W |                                       |
|         |     | PSET6  | PTM6 preset                                             | Preset         | No operation   | 0  | W   | "0" when being read                   |
|         |     |        | PTM6 input clock selection                              |                | Internal clock | 0  | R/W | · · · · · · · · · · · · · · · · · · · |
| 00FF89  | D7  | -      | -                                                       | -              |                | 0  | R   | Constantly "0" when                   |
|         | D6  | _      | _                                                       | _              | _              | 0  | R   | being read                            |
|         | D5  | _      |                                                         | _              | _              | 0  | R   | comp roud                             |
|         | D3  | _      | – R/W register                                          | - 1            | 0              | 0  | R/W | Reserved register                     |
|         | D3  | _      | R/W register                                            | 1              | 0              | 0  | R/W | reserved register                     |
|         |     |        | PTM7 Run/Stop control                                   | Run            | Stop           | 0  | R/W |                                       |
|         |     | PSET7  | PTM7 preset                                             | Preset         | -              | 0  | W W | "0" when being read                   |
|         |     |        | *                                                       |                | No operation   |    | -   | "0" when being read                   |
|         | 00  | UNJEL/ | PTM7 input clock selection                              | External clock | Internal clock | 0  | R/W |                                       |

Table 3.5.1(p)I/O Memory map (00FF84H–00FF89H)

| Address | Bit | Name         | Table 3.5.1(q)     I/O Memory map (0       Function | 1    | 0   | SR | R/W | Comment |
|---------|-----|--------------|-----------------------------------------------------|------|-----|----|-----|---------|
| 00FF8A  | D7  | RDR67        | PTM6 reload data D7 (MSB)                           |      |     |    |     |         |
|         | D6  | RDR66        | PTM6 reload data D6                                 | High |     | 1  | R/W |         |
|         | D5  | RDR65        | PTM6 reload data D5                                 |      |     |    |     |         |
|         |     | RDR64        | PTM6 reload data D4                                 |      | Low |    |     |         |
|         |     | RDR63        | PTM6 reload data D3                                 |      |     |    |     |         |
|         |     | RDR62        | PTM6 reload data D2                                 |      |     |    |     |         |
|         |     | RDR61        | PTM6 reload data D1                                 |      |     |    |     |         |
|         |     | RDR60        | PTM6 reload data D0 (LSB)                           |      |     |    |     |         |
| 00FF8B  |     | RDR77        | PTM7 reload data D7 (MSB)                           |      |     |    |     |         |
|         |     | RDR76        | PTM7 reload data D6                                 |      | Low | 1  | R/W |         |
|         |     | RDR75        | PTM7 reload data D5                                 |      |     |    |     |         |
|         |     | RDR74        | PTM7 reload data D4                                 |      |     |    |     |         |
|         |     | RDR73        | PTM7 reload data D3                                 | High |     |    |     |         |
|         |     | RDR72        | PTM7 reload data D2                                 |      |     |    |     |         |
|         |     | RDR71        | PTM7 reload data D1                                 |      |     |    |     |         |
|         |     | RDR70        | PTM7 reload data D0 (LSB)                           |      |     |    |     |         |
| 00FF8C  |     | CDR67        | PTM6 compare data D7 (MSB)                          |      |     |    | R/W |         |
|         |     | CDR66        | PTM6 compare data D6                                |      |     |    |     |         |
|         |     | CDR65        | PTM6 compare data D5                                | High |     |    |     |         |
|         |     | CDR64        | PTM6 compare data D4                                |      |     |    |     |         |
|         |     | CDR63        | PTM6 compare data D3                                |      | Low | 0  |     |         |
|         |     | CDR62        | PTM6 compare data D2                                |      |     |    |     |         |
|         |     | CDR61        | PTM6 compare data D1                                |      |     |    |     |         |
|         |     | CDR60        | PTM6 compare data D0 (LSB)                          |      |     |    |     |         |
| 00FF8D  |     | CDR77        | PTM7 compare data D7 (MSB)                          |      |     |    |     |         |
|         |     | CDR76        | PTM7 compare data D6                                |      | Low | 0  | R/W |         |
|         |     | CDR75        | PTM7 compare data D5                                | High |     |    |     |         |
|         |     | CDR74        | PTM7 compare data D4                                |      |     |    |     |         |
|         |     | CDR73        | PTM7 compare data D3                                |      |     |    |     |         |
|         |     | CDR72        | PTM7 compare data D2                                |      |     |    |     |         |
|         |     | CDR71        | PTM7 compare data D1                                |      |     |    |     |         |
|         |     | CDR70        | PTM7 compare data D0 (LSB)                          |      |     |    |     |         |
| 00FF8E  |     | PTM67        | PTM6 data D7 (MSB)                                  |      |     |    |     |         |
| 001102  |     | PTM66        | PTM6 data D6                                        |      |     |    |     |         |
|         |     | PTM65        | PTM6 data D5                                        | High | Low | 1  | R   |         |
|         |     | PTM64        | PTM6 data D4                                        |      |     |    |     |         |
|         |     | PTM63        | PTM6 data D3                                        |      |     |    |     |         |
|         |     | PTM62        | PTM6 data D2                                        |      |     |    |     |         |
|         |     | PTM61        | PTM6 data D1                                        |      |     |    |     |         |
|         |     | PTM60        | PTM6 data D0 (LSB)                                  |      |     |    |     |         |
| 00FF8F  |     | PTM77        | PTM7 data D7 (MSB)                                  | High | Low | 1  | R   |         |
|         |     | PTM76        | PTM7 data D6                                        |      |     |    |     |         |
|         |     | PTM75        | PTM7 data D5                                        |      |     |    |     |         |
|         |     | PTM74        | PTM7 data D4                                        |      |     |    |     |         |
|         |     | PTM73        | PTM7 data D3                                        |      |     |    |     |         |
|         |     | PTM72        | PTM7 data D2                                        |      |     |    |     |         |
|         | ~~  | 1 I I VI I Z | 1 1.11.1 uuuu 122                                   |      |     |    |     |         |
|         |     | PTM71        | PTM7 data D1                                        |      |     |    |     |         |

Table 3.5.1(q) I/O Memory map (00FF8AH–00FF8FH)

# 4 POWER SUPPLY

This chapter explains the operating voltage and the configuration and control of the S1C88655 internal power supply circuit.

# 4.1 Operating Voltage

The S1C88655 operating power voltage is as follows:

1.8 V to 3.6 V

Supply a voltage within the above range to between the VDD (+) and Vss (GND) terminals.

Note: The S1C88655 has three VDD terminals and four Vss terminals. These terminals must be connected to VDD or Vss. Do not leave the terminals open.

# 4.2 Internal Power Supply Circuit

The S1C88655 has a built-in power supply circuit as shown in Figure 4.2.1 that generates all the voltages required for the internal circuits from the supply voltage within the range described above.

- Notes: Be sure not to use the voltages output from the VD1, VD2, and VC1–VC5 terminals for driving external circuits.
  - Voltage within the range of 2.0 to 3.6 V should be supplied to VDD when generating the VC1 to VC5 voltages. If VDD = 1.8–2.0 V, the VC1 to VC5 voltages will be generated higher than those described in Chapter 19, "Electrical Characteristics".

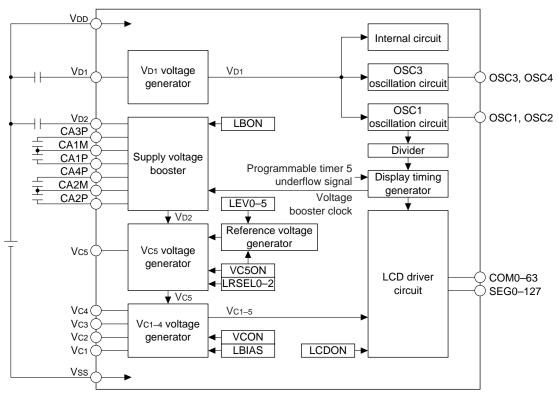



Fig. 4.2.1 Configuration of internal power supply circuit

#### 4.2.1 VD1 voltage generator

The VD1 voltage generator outputs the VD1 operating voltage for the internal logic and oscillation circuits. The VD1 voltage value is fixed at 1.8 V (Typ.).

#### 4.2.2 Supply voltage booster circuit

The VD2 voltage is used to drive the VC5 voltage generator and VC1-4 voltage generator that generates the LCD drive voltages. The supply voltage booster circuit generates the VD2 voltage by double, triple, quadruple, or quintuple boosting the supply voltage VDD. The boost ratio can be configured with the external circuit as shown in Figure 4.2.2.1. Select a boost ratio according to the VDD voltage value so that the VD2 voltage level is higher than the desired VC5.

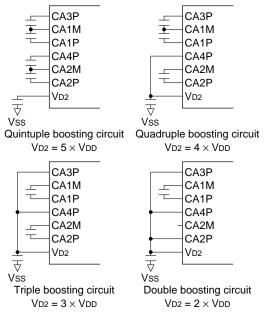



Fig. 4.2.2.1 External connection for supply voltage booster circuit

- Notes: Make sure that the VD2 voltage does not exceed the absolute maximum rating (see Chapter 19, "Electrical Characteristics") when setting the boosting ratio.
  - The capacitances depend on the load of the LCD panel to drive. Select component values so that the LCD drive voltages are stabilized as much as possible.
  - Current consumption varies according to the boosting ratio. See Chapter 19, "Electrical Characteristics".

The supply voltage booster circuit is activated by writing "1" to the supply voltage booster ON/OFF control register LBON and is deactivated by writing "0". However, the LCD display timing generator must be turned ON to supply the voltage booster clock to the supply voltage booster circuit before turning the circuit ON.

## 4.2.3 Vc5 voltage generator

The VC5 voltage generator generates the LCD drive voltage VC5 from the VD2 voltage output by the supply voltage booster circuit. The VC5 voltage generator includes a 64-level programmable voltage control and a software adjustable resistor with 7 different resistances to provide a  $64 \times 7$ -voltage fine adjustment function. This function is used to adjust the contrast of the LCD panel.

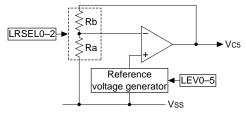



Fig. 4.2.3.1 Configuration of VC5 voltage generator

The programmable voltage control can be adjusted within level 0 to level 63 using the VC5 voltage control register LEV0–LEV5. The resistance ratio "(Ra + Rb)/Ra" can be selected as listed in Table 4.2.3.1 using the VC5 voltage generator resistance ratio adjustment register LRSEL0–LRSEL2.

| Table 4.2.3.1 Adjusting resistance ratio |        |        |             |  |  |  |  |
|------------------------------------------|--------|--------|-------------|--|--|--|--|
| in VC5 voltage generator                 |        |        |             |  |  |  |  |
| LRSEL2                                   | LRSEL1 | LRSEL0 | (Ra+Rb)/Ra  |  |  |  |  |
| 1                                        | 1      | 1      | Not allowed |  |  |  |  |
| 1                                        | 1      | 0      | 8.69        |  |  |  |  |
| 1                                        | 0      | 1      | 8.13        |  |  |  |  |
| 1                                        | 0      | 0      | 7.20        |  |  |  |  |
| 0                                        | 1      | 1      | 6.46        |  |  |  |  |
| 0                                        | 1      | 0      | 5.60        |  |  |  |  |
| 0                                        | 0      | 1      | 4.84        |  |  |  |  |
| 0                                        | 0      | 0      | 4.06        |  |  |  |  |

See Chapter 19, "Electrical Characteristics", for the  $\rm Vc5$  voltage adjustment values.

The VC5 voltage generator is activated by writing "1" to the VC5 voltage generator ON/OFF control register VC5ON and is deactivated by writing "0".

### 4.2.4 VC1-4 voltage generator

The VC1-4 voltage generator generates the LCD drive voltages VC1, VC2, VC3, and VC4 by dividing the VC5 voltage output from the VC5 voltage generator with resistors. These voltages are supplied to the LCD driver circuit via a voltage follower circuit. Furthermore, the LCD bias select register LBIAS is provided to select the LCD bias ratio from 1/7 bias or 1/9 bias.

See Chapter 19, "Electrical Characteristics", for the voltage values.

The VC1-4 voltage generator is activated by writing "1" to the VC1-4 voltage generator ON/OFF control register VCON and is deactivated by writing "0".

# 4.2.5 LCD drive power supply circuit control procedure

The supply voltage booster circuit, VC5 voltage generator, and VC1-4 voltage generator should be activated in the procedure as shown in Figure 4.2.5.1.

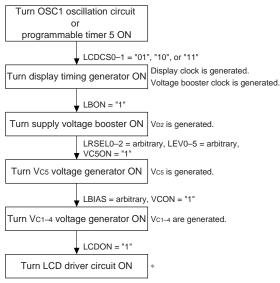



Fig. 4.2.5.1 LCD drive power supply circuit control procedure

\* Setting the LCDON register to "1" starts supplying the VC1-VC5 voltages to the LCD driver to enable display controls. Furthermore, the LCD driver generates the CL and FR signals. However, the DSPC0 and DSPC1 registers must be configured to start the LCD display.

While the LCD display is turned OFF, the LCD drive power supply circuit can be deactivated to reduce current consumption. In this case, turn each circuit OFF in the reverse order of Figure 4.2.5.1 except hardware reset.

See chapters "8 Oscillation Circuits", "13 Programmable Timer", and "15 LCD Driver" for controlling the OSC1 oscillation circuit, programmable timer, and display timing generator.

## 4.3 Details of Control Registers

Table 4.3.1 shows the control bits of the power supply circuit.

| Address | Bit | Name   | Tuble 4.5.1Fower supply control bitsFunction1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SR | R/W | Comment             |
|---------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|---------------------|
| 00FF09  | D7  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _  | _   | "0" when being read |
|         | D6  | LCDON  | CD driver circuit On/Off control On Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0  | R/W |                     |
|         | D5  | LBIAS  | CD bias selection 1/9 bias 1/7 bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1  | R/W |                     |
|         | D4  | VCON   | C1-4 voltage generator On/Off control On Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | R/W |                     |
|         | D3  | VC5ON  | C5 voltage generator On/Off control On Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0  | R/W |                     |
|         | D2  | LBON   | upply voltage booster On/Off control On Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | R/W |                     |
|         | D1  | LCDCS1 | isplay timing generator control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | R/W |                     |
|         |     |        | LCDCS1 LCDCS0 Source clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |                     |
|         |     |        | 1 1 P timer 5<br>1 0 fosc1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |     |                     |
|         | DU  | LCDCS0 | 0 	 1 	 fosc1/2 	 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  | R/W |                     |
|         |     |        | 0 	 0 	 Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |                     |
| 00FF0A  | D7  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _  | -   | Constantly "0" when |
|         | D6  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _  | -   | being read          |
|         | D5  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  | -   |                     |
|         | D4  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  | -   |                     |
|         | D3  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  | -   |                     |
|         | D2  | LRSEL2 | C5 voltage generator resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | R/W |                     |
|         |     |        | tio adjustment<br>LRSEL2 LRSEL1 LRSEL0 Resistance ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |     |                     |
|         |     |        | $\frac{1}{1} \frac{1}{1} \frac{1}$ |    | L   |                     |
|         | D1  | LRSEL1 | 1 1 0 8.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0  | R/W |                     |
|         |     |        | 1 0 1 8.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |                     |
|         |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |                     |
|         | D0  | LRSEL0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0  | R/W |                     |
|         |     |        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |                     |
|         |     |        | 0 0 0 4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |                     |
| 00FF0B  | D7  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  | -   | Constantly "0" when |
|         | D6  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  | -   | being read          |
|         | D5  | LEV5   | C5 voltage control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0  | R/W |                     |
|         | D4  | LEV4   | LEV5 LEV4 LEV3 LEV2 LEV1 LEV0 Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  | R/W |                     |
|         | D3  | LEV3   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0  | R/W |                     |
|         | D2  | LEV2   | 1 1 1 1 1 0 02<br>: : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0  | R/W |                     |
|         | D1  | LEV1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | R/W |                     |
|         | D0  | LEV0   | 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | R/W |                     |

Table 4.3.1 Power supply control bits

#### LBON: 00FF09H•D2

Controls the supply voltage booster circuit.

When "1" is written: ON When "0" is written: OFF Reading: Valid

When "1" is written to LBON, the supply voltage booster circuit goes ON and outputs VD2 by boosting the VDD in the boosting ratio set using the CAxx terminals. The VD2 voltage is supplied to the VC5 voltage generator and VC1-4 voltage generator that generates the LCD drive voltages. When "0" is written to LBON, the supply voltage booster circuit goes OFF.

At initial reset, LBON is set to "0" (OFF).

### VC50N: 00FF09H•D3

Controls the VC5 voltage generator.

When "1" is written:ONWhen "0" is written:OFFReading:Valid

When "1" is written to VC5ON, the VC5 voltage generator goes ON and outputs the LCD drive voltage VC5. However, a VD2 voltage higher than the desired VC5 voltage level must be supplied from the supply voltage booster circuit before the VC5 voltage can be generated. When "0" is written to VC5ON, the VC5 voltage generator goes OFF. At initial reset, VC5ON is set to "0" (OFF).

#### VCON: 00FF09H•D4

Controls the VC1-4 voltage generator.

When "1" is written: ON When "0" is written: OFF Reading: Valid

When "1" is written to VCON, the Vc1-4 voltage generator goes ON and outputs the LCD drive voltages Vc1-Vc4. However, the Vc5 voltage must be supplied from the Vc5 voltage generator before these voltages can be generated. When "0" is written to VCON, the Vc1-4 voltage generator goes OFF.

At initial reset, VCON is set to "0" (OFF).

Note: While the LCD panel is turned OFF, the LCD drive power supply circuit should be turned OFF to reduce current consumption using LBON, VC5ON, and VCON.

#### LBIAS: 00FF09H•D5

Selects the bias ratio for LCD drive.

When "1" is written:1/9 biasWhen "0" is written:1/7 biasReading:Valid

When "1" is written to LBIAS, 1/9 bias is selected and when "0" is written, 1/7 bias is selected. This setting controls the Vc1-4 voltage generator outputs.

At initial reset LBIAS is set to "1" (1/9 bias).

#### LRSEL0-LRSEL2: 00FF0AH•D0-D2

Selects a resistance ratio to adjust the output voltage of the VC5 voltage generator.

| Table 4.3.2 Adjusting | resistance ratio |
|-----------------------|------------------|
|-----------------------|------------------|

| in VC5 voltage ge | nerator |
|-------------------|---------|
|-------------------|---------|

| LRSEL2 | LRSEL1 | LRSEL0 | (Ra+Rb)/Ra  |
|--------|--------|--------|-------------|
| 1      | 1      | 1      | Not allowed |
| 1      | 1      | 0      | 8.69        |
| 1      | 0      | 1      | 8.13        |
| 1      | 0      | 0      | 7.20        |
| 0      | 1      | 1      | 6.46        |
| 0      | 1      | 0      | 5.60        |
| 0      | 0      | 1      | 4.84        |
| 0      | 0      | 0      | 4.06        |

At initial reset, LRSEL is set to "0".

#### LEV0-LEV5: 00FF0BH•D0-D5

Adjusts the reference voltage for the Vc5 voltage generator in 64 levels (0 to 63). The contrast of the LCD panel can be adjusted with both this register and the LRSEL0–LRSEL2 register. See Chapter 19, "Electrical Characteristics", for relationship between the setting values and the Vc5 voltage values. At initial reset, LEV is set to "0".

## 4.4 Precautions

 Be sure not to use the voltages output from the VD1 and VD2 terminals for driving external circuits.
 The VC1-VC5 terminal outputs can only be used

The VC1–VC5 terminal outputs can only be used to drive a recommended LCD driver.

(2) The supply voltage booster circuit must be configured so that the VD2 voltage level is higher than the desired VC5. However, make sure that the VD2 voltage does not exceed the absolute maximum rating (see Chapter 19, "Electrical Characteristics") when setting the boosting ratio.

# 5 INITIAL RESET

An initial reset must be applied to the S1C88655 to initialize the internal circuits. This chapter describes the internal initial reset circuits and default values of the CPU registers.

## 5.1 Configuration of Initial Reset Circuit

The S1C88655 handles two internal reset signals for system reset and CPU reset.

## System reset

The system reset signal initializes all the I/O registers and counters. When a system reset is issued, the CPU reset is issued simultaneously also.

The following lists the causes of system reset:

- (1) External initial reset via the RESET terminal
- (2) Internal initial reset by the reset voltage detector (mask option)

## **CPU** reset

The CPU reset signal resets only the CPU with the I/O register values maintained. The cause of CPU reset is as follows:

 Internal initial reset by the watchdog timer overflow signal (mask option) Figure 5.1.1 shows the configuration of the initial reset circuit.

The CPU and peripheral circuits enter an reset status when a cause of initial reset occurs. When the cause of the reset is canceled, the CPU starts reset exception processing. (See the "S1C88 Core CPU Manual".)

When this occurs, the reset exception processing vector, Bank 0, 000000H–000001H from the program memory is read out and the program (initialization routine) which begins at the readout address is executed.

## 5.1.1 **RESET** terminal

Initial reset can be done by externally inputting a LOW level to the  $\overline{\text{RESET}}$  terminal.

Be sure to maintain the RESET terminal at LOW level for the regulation time after the power on to assure the initial reset. (See Chapter 19, "Electrical Characteristics".)

In addition, be sure to use the  $\overline{\text{RESET}}$  terminal for the first initial reset after the power is turned on. However, it is not necessary to reset the IC using the  $\overline{\text{RESET}}$  terminal when the internal reset circuit is enabled by mask option.

The **RESET** terminal is equipped with a pull-up resistor. You can select whether or not to use by mask option.

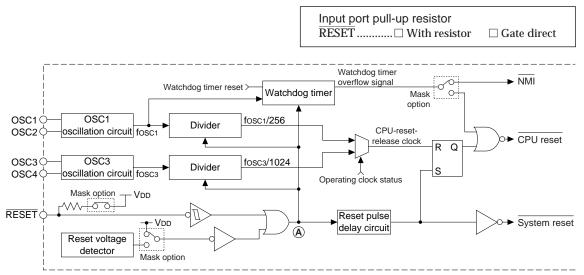



Fig. 5.1.1 Configuration of initial reset circuit

## 5.1.2 Reset voltage detector (RVD)

The S1C88655 has a built-in reset voltage detector that can be enabled by mask option. This circuit has a power-on reset function that issues a system reset when the power supply is turned OFF or the supply voltage drops as well as when the power supply is turned ON.

| Reset voltage detector |       |  |
|------------------------|-------|--|
| $\Box$ Not Use         | □ Use |  |

When "Use" is selected by mask option, the reset voltage detector asserts the reset signal immediately after power is turned on until the supply voltage VDD reaches the reset release level. Furthermore, when the power is turned OFF or the supply voltage drops, the reset voltage detector asserts the reset signal after the supply voltage VDD drops under the reset level. There is a hysteresis error between the reset release level and the reset level. The reset voltage detector contains a function to hold reset status for a certain time to make sure the IC resets even if there is an instantaneous power interruption or a power surge. Note that current consumption increases when the reset voltage detector is used. See Chapter 19, "Electrical Characteristics", for the reset level, reset release level, hysteresis and current consumption.

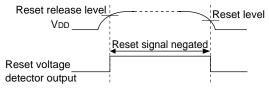



Fig. 5.1.2.1 Reset output from reset voltage detector

When the reset voltage detector is used, it is not necessary to perform initial reset using the  $\overline{\text{RESET}}$  terminal. However, both the  $\overline{\text{RESET}}$  terminal and the reset voltage detector can be used for initial reset.

## 5.1.3 Watchdog timer overflow signal

The watchdog timer overflow signal can be used as a CPU reset signal by mask option.

| Watchdog timer overflo | w signal     |
|------------------------|--------------|
| □ Interrupt(NMI)       | $\Box$ Reset |

When "Reset" is selected, the watchdog timer overflow signal will reset only the CPU (it does not initialize the register values of the peripheral circuits). The reset signal output from the watchdog timer is negated without waiting for oscillation stabilization time.

## 5.1.4 Initial reset sequence

Even if the RESET terminal input or internal reset circuit negates the reset signal after power is turned on, the CPU's reset status continues (or the CPU does not starts up) until the oscillation stabilization waiting time ( $512/fosc_3$  sec.) has elapsed. Figure 5.1.4.1 shows the operating sequence following initial reset release.

The CPU starts operating in synchronization with the OSC3 clock after reset status is released.

Note: The oscillation stabilization time described in this section does not include oscillation start time. Therefore the time interval until the CPU starts executing instructions after power is turned on or SLEEP status is cancelled may be longer than that indicated in the figure below.

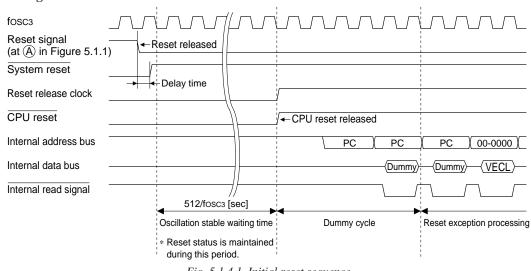



Fig. 5.1.4.1 Initial reset sequence

# 5.2 Initial Settings After Initial Reset

The CPU internal registers are initialized as follows during initial reset.

| Table 5.2.1 Initial settings |      |            |               |  |  |  |  |
|------------------------------|------|------------|---------------|--|--|--|--|
| Register name                | Code | Bit length | Setting value |  |  |  |  |
| Data register A              | Α    | 8          | Undefined     |  |  |  |  |
| Data register B              | В    | 8          | Undefined     |  |  |  |  |
| Index (data) register L      | L    | 8          | Undefined     |  |  |  |  |
| Index (data) register H      | Н    | 8          | Undefined     |  |  |  |  |
| Index register IX            | IX   | 16         | Undefined     |  |  |  |  |
| Index register IY            | IY   | 16         | Undefined     |  |  |  |  |
| Program counter              | PC   | 16         | Undefined*    |  |  |  |  |
| Stack pointer                | SP   | 16         | Undefined     |  |  |  |  |
| Base register                | BR   | 8          | Undefined     |  |  |  |  |
| Zero flag                    | Z    | 1          | 0             |  |  |  |  |
| Carry flag                   | C    | 1          | 0             |  |  |  |  |
| Overflow flag                | V    | 1          | 0             |  |  |  |  |
| Negative flag                | N    | 1          | 0             |  |  |  |  |
| Decimal flag                 | D    | 1          | 0             |  |  |  |  |
| Unpack flag                  | U    | 1          | 0             |  |  |  |  |
| Interrupt flag 0             | IO   | 1          | 1             |  |  |  |  |
| Interrupt flag 1             | I1   | 1          | 1             |  |  |  |  |
| New code bank register       | NB   | 8          | 01H           |  |  |  |  |
| Code bank register           | CB   | 8          | Undefined*    |  |  |  |  |
| Expand page register         | EP   | 8          | 00H           |  |  |  |  |
| Expand page register for IX  | XP   | 8          | 00H           |  |  |  |  |
| Expand page register for IY  | YP   | 8          | 00H           |  |  |  |  |

Table 5.2.1 Initial settings

\* Reset exception processing loads the preset values stored in 0 bank, 0000H–0001H into the PC. At the same time, 01H of the NB initial value is loaded into CB.

Initialize the registers which are not initialized at initial reset using software.

Since the internal RAM and display data RAM are not initialized at initial reset, be sure to initialize using software.

The respectively stipulated initializations are done for internal peripheral circuits. If necessary, the initialization should be done using software. For initial values at initial reset, see Section 3.5, "I/ O Memory", and peripheral circuit descriptions in the following chapters.

# 6 SYSTEM CONTROLLER AND BUS CONTROL

The system controller is a management unit which sets such items as the bus mode in accordance with memory system configuration factors. For the purposes of controlling the system, the following settings can be performed in software:

- (1) Bus and CPU mode settings
- (2) Chip enable (CE) signal output settings
- (3) WAIT state settings for external memory
- (4) Page address setting of the stack pointer

Below is a description of the how these settings are to be made.

# 6.1 Configuration of External Bus

The S1C88655 has bus terminals that can address a maximum of  $1M \times 4$  bytes and memory (and other) devices can be externally expanded according to the range of each bus mode described in the previous section.

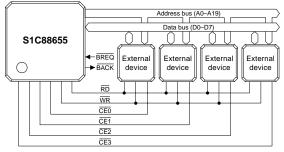



Fig. 6.1.1 External bus lines

### Address bus

The S1C88655 possesses a 20-bit external address bus (A0–A19). The address bus terminals A0–A19 are shared with output ports R00–R07 (=A0–A7), R10–R17 (=A8–A15) and R20–R23 (=A16–A19), switching between these functions being determined by the bus mode setting.

When set as address bus, the data register and high impedance control register of each output port can be used as a general-purpose data register with read/write capabilities.

#### Data bus

The S1C88655 possesses an 8-bit external data bus (D0–D7). The data bus terminals D0–D7 are shared with I/O ports P00–P07, switching between these functions being determined by the bus mode setting.

When set as data bus, the data register and I/O control register of each I/O port can be used as a general-purpose data register with read/write capabilities.

The data bus can be pulled up to high during input mode using the built-in pull-up resistor. This pull-up resistor is enabled or disabled using the pull-up control register and mask option. See Chapter 10, "I/O Ports (P Ports)" for details.

## Read (RD)/write (WR) signals

The read  $(\overline{RD})$ /write  $(\overline{WR})$  signal output terminals directed to external devices are shared respectively with the output ports R24 and R25, switching between these functions being determined by the bus mode setting. When set as read  $(\overline{RD})$ /write  $(\overline{WR})$  signal output terminals, the data register and high impedance control register for each output port (R24, R25) can be used as a general-purpose data register with read/write capabilities. The read  $(\overline{RD})$ /write  $(\overline{WR})$  signals are output only when an external memory is accessed When accessing the internal memory area, these signals are not output outside the IC.

## Chip enable (CE) signal

The S1C88655 is equipped with an address decoder which can output four different chip enable ( $\overline{\text{CE}}$ ) signals. Consequently, four devices equipped with a chip enable ( $\overline{\text{CE}}$ ) or chip select ( $\overline{\text{CS}}$ ) terminal can be directly connected without any external address decoder circuit.

The four chip enable ( $\overline{\text{CE0}}$ - $\overline{\text{CE3}}$ ) signal output terminals are shared with the output ports R30– R33, either the chip enable ( $\overline{\text{CE}}$ ) output or general-purpose output can be selected in each bit with software (except for single chip mode). When set for chip enable ( $\overline{\text{CE}}$ ) output, the data register and high impedance control register for each output port can be used as a generalpurpose data register with read/write capabilities.

The chip enable  $(\overline{CE})$  signals are output only when an external memory is accessed. When accessing the internal memory area, these signals are not output to outside the IC. See Table 6.3.1 for the address ranges that are assigned to the chip enable  $(\overline{CE})$  signals.

## 6.2 Bus Mode and CPU Mode

## 6.2.1 Bus mode

In order to set bus specifications to match the configuration of external expanded memory, two different bus modes described below are selectable using the bus mode setting register BUSMOD. (1) Single chip mode (BUSMOD = "0") (2) Expansion mode (BUSMOD = "1")

#### Single chip mode

The single chip mode setting applies when the S1C88655 is used as a single chip microcomputer without external expanded memory. Since this mode uses the internal ROM, the system can only be operated in the MCU mode. In the MPU mode, the system cannot be set to the single chip mode.

Since there is no need for an external bus line in this mode, terminals normally set for bus use can be used as general-purpose output ports or I/O ports.

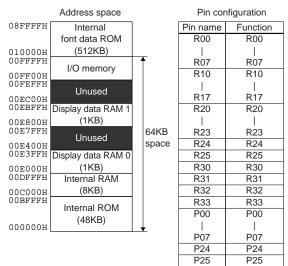



Fig. 6.2.1.1 Memory map for single chip mode

#### Expansion mode

The expansion mode setting applies when the S1C88655 is used with up to 1M bytes  $\times$  4 of external expanded memory. Because internal ROM is being used in the MCU mode, external devices can be assigned to the area from 100000H to 4FFFFFH. Since the internal ROM area is released in the MPU mode, external devices can be assigned to the area from 000000H to 3FFFFFH. However

the area from 000000H to 3FFFFFH. However, the area from 00C000H to 00FFFFH is assigned to internal memory and cannot be used to access an external device.

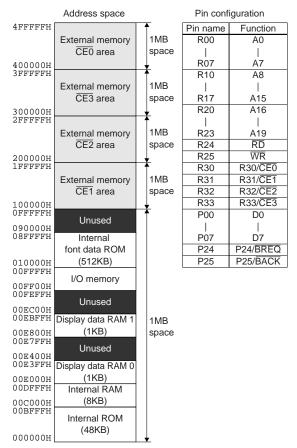



Fig. 6.2.1.2 Memory map for MCU expansion mode

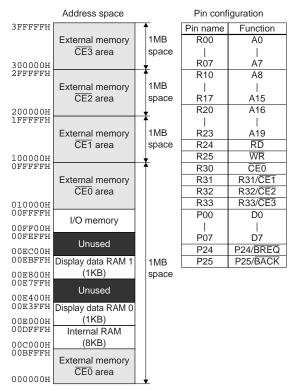



Fig. 6.2.1.3 Memory map for MPU expansion mode

## 6.2.2 CPU mode

The CPU allows software to select its operating mode from two types shown below according to the programming area size. Use the CPU mode setting register CPUMOD for selection. (1) Minimum mode (CPUMOD = "0") (2) Maximum mode (CPUMOD = "1")

#### Minimum mode

The program area is configured within 64K bytes in any one-bank. However, the bank to be used must be specified in the CB register and cannot be changed after an initialization. This mode does not push the CB register contents onto the stack when a subroutine is called. It makes it possible to economize on stack area usage.

#### Maximum mode

The program area can be configured exceeding 64K bytes. However the CB register must be setup when the program exceeds a bank boundary every 64K bytes. This mode pushes the CB register contents when a subroutine is called.

Table 6.2.2.1 lists the configuration of MCU/MPU mode, bus mode, and CPU mode.

#### Mode set after initial reset

At initial reset, the bus mode (CPU mode) is set as explained below.

#### In MCU mode:

At initial reset, the S1C88655 is set in single chip mode (minimum).

Accordingly, in MCU mode, even if a memory has been externally expanded, the system is activated by the program stored in the internal ROM.

In the system with externally expanded memory, perform the applicable bus mode settings during the initialization routine originating in the internal ROM.

#### In MPU mode:

At initial reset, the S1C88655 is set in expansion mode (minimum).

Therefore, the internal ROM will be disabled.

| MCU/MPU      | Setting value |        | Bus mode    | CPU mode | Configuration of outernal memory      |  |
|--------------|---------------|--------|-------------|----------|---------------------------------------|--|
| terminal     | BUSMOD        | CPUMOD | Dus mode    | CPU mode | Configuration of external memory      |  |
| 1 (MCU mode) | 1 1           |        | Expansion   | Maximum  | ROM+RAM>64K bytes (Program≥64K bytes) |  |
|              | 1             |        |             | Minimum  | ROM+RAM>64K bytes (Program<64K bytes) |  |
| 0 1          |               | 1      | Single chip | Maximum  | None (Program≥64K bytes)              |  |
|              | 0             | 0      |             | Minimum  | None (Program<64K bytes)              |  |
| 0 (MPU mode) | 1             | 1      | Expansion   | Maximum  | ROM+RAM>64K bytes (Program≥64K bytes) |  |
|              | 1             | 0      |             | Minimum  | ROM+RAM>64K bytes (Program<64K bytes) |  |
|              | 0             | 1      |             | Maximum  | ROM+RAM>64K bytes (Program≥64K bytes) |  |
|              | 0             | 0      |             | Minimum  | ROM+RAM>64K bytes (Program<64K bytes) |  |

Table 6.2.2.1 Setting bus mode and CPU mode

# 6.3 Address Decoder ( $\overline{CE}$ ) Settings

The S1C88655 is equipped with address decoders that can output a maximum of four chip enable signals ( $\overline{CE0}$ – $\overline{CE3}$ ) to external devices.

At initial reset, the  $\overline{CE0}$ – $\overline{CE3}$  terminals are set as output port terminals (R30–R33). For this reason, when operating in expansion mode, the ports to be used as  $\overline{CE}$  signal output terminals must be configured. This setting is performed through software which writes "1" to registers CE0–CE3 corresponding the  $\overline{CE}$  signals to be used.

However, in the MPU mode the R30 terminal is always configured as the  $\overline{\text{CE0}}$  output port. Table 6.3.1 shows the address range assigned to the four chip enable ( $\overline{\text{CE}}$ ) signals.

| Table 0.3.1 Address settings of CEO-CE3 |                         |                 |  |  |  |  |
|-----------------------------------------|-------------------------|-----------------|--|--|--|--|
| Mode                                    | CE signal               | Address         |  |  |  |  |
| MCU                                     | CE0                     | 400000H4FFFFFH  |  |  |  |  |
| expansion                               | CE1                     | 100000H-1FFFFH  |  |  |  |  |
| mode                                    | $\overline{CE2}$        | 200000H-2FFFFFH |  |  |  |  |
|                                         | CE3                     | 300000H-3FFFFFH |  |  |  |  |
| MPU                                     | CE0                     | 000000H-00BFFFH |  |  |  |  |
| expansion                               |                         | 010000H-0FFFFH  |  |  |  |  |
| mode                                    | CE1                     | 100000H-1FFFFH  |  |  |  |  |
|                                         | $\overline{\text{CE2}}$ | 200000H-2FFFFFH |  |  |  |  |
|                                         | CE3                     | 300000H-3FFFFFH |  |  |  |  |

Table 6.3.1 Address settings of  $\overline{CE0}$ - $\overline{CE3}$ 

The arrangement of memory space for external devices does not necessarily have to be continuous from a subordinate address and any of the chip enable signals can be used to assign areas in memory. However, in the MPU mode, program memory must be assigned to  $\overline{\text{CE0}}$ . The  $\overline{\text{CE}}$  signals are output only when the appointed external memory area is accessed and are not

Note: The CE signals will be inactive status when the chip enters the standby mode (HALT mode or SLEEP mode).

output when internal memory is accessed.

# 6.4 WAIT State Settings

In order to insure accessing of external low speed devices during high speed operations, the S1C88655 is equipped with a WAIT function which prolongs access time. (See the "S1C88 Core CPU Manual" for details of the WAIT function.)

The number of wait states inserted can be selected from a choice of eight as shown in Table 6.4.1 using the WAIT state control register WT0–WT2.

| Table 6.4.1 Setting number of WAIT states |     |     |                           |  |  |  |  |
|-------------------------------------------|-----|-----|---------------------------|--|--|--|--|
| WT2                                       | WT1 | WT0 | Number of inserted states |  |  |  |  |
| 1                                         | 1   | 1   | 14                        |  |  |  |  |
| 1                                         | 1   | 0   | 12                        |  |  |  |  |
| 1                                         | 0   | 1   | 10                        |  |  |  |  |
| 1                                         | 0   | 0   | 8                         |  |  |  |  |
| 0                                         | 1   | 1   | 6                         |  |  |  |  |
| 0                                         | 1   | 0   | 4                         |  |  |  |  |
| 0                                         | 0   | 1   | 2                         |  |  |  |  |
| 0                                         | 0   | 0   | No wait                   |  |  |  |  |

Table 6.4.1 Setting number of WAIT states

\* The length of one state is a 1/2 clock cycle.

WAIT states set in software are inserted between bus cycle states T3–T4.

Note, however, that WAIT states cannot be inserted when an internal register and internal memory are being accessed and when operating with the OSC1 oscillation circuit.

Consequently, WAIT state settings in single chip mode are meaningless.

Figures 6.4.1 and 6.4.2 show the memory read/ write timing charts.

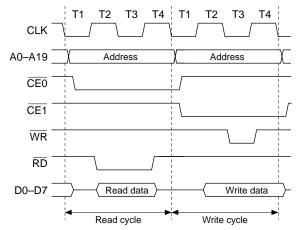



Fig. 6.4.1 Memory read/write cycle (no wait state)

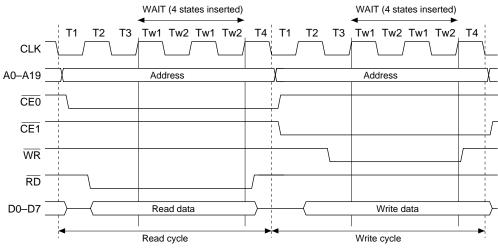



Fig. 6.4.2 Memory read/write cycle (with wait state)

# 6.5 Setting Bus Authority Release Request Signal

The S1C88655 is equipped with a bus authority release function on request from an external device so that DMA (Direct Memory Access) transfer can be conducted between external devices. The internal memory cannot be accessed by this function.

There are two terminals used for this function: the bus authority release request signal ( $\overline{BREQ}$ ) input terminal and the bus authority release acknowledge signal ( $\overline{BACK}$ ) output terminal. The  $\overline{BREQ}$  input terminal is shared with the P24 port and the  $\overline{BACK}$  output terminal with the P25 port. At initial reset, these terminal facilities are set as I/O port terminals. The terminals can be altered to function as  $\overline{BREQ}/\overline{BACK}$  terminals by writing "1" to register EBR. In the single chip mode, or when using a system which does not require bus authority release, EBR must be fixed at "0".

When the bus authority release request ( $\overline{BREQ}$  = LOW) is received from an external device, the S1C88655 switches the address bus, data bus,  $\overline{RD}$ / $\overline{WR}$  signal, and  $\overline{CE}$  signal lines to a high impedance state, outputs a LOW level from the BACK terminal and releases bus authority. As soon as a LOW level is output from the BACK terminal, the external device can use the external bus. When DMA is completed, the external device returns the BREQ terminal to HIGH and releases bus authority. Figure 6.5.1 shows the bus authority release sequence.

During bus authority release state, internal memory cannot be accessed from the external device. In cases where external memory has areas which overlap areas in internal memory, the external memory areas can be accessed accordance with the  $\overline{\text{CE}}$  signal output by the external device.

Note: Be careful with the system, such that an external device does not become the bus master, other than during the bus release status. After setting the BREQ terminal to LOW level, hold the BREQ terminal at LOW level until the BACK terminal becomes LOW level. If the BREQ terminal is returned to HIGH level, before the BACK terminal becomes LOW level, the shift to the bus authorization release status will become indefinite.

# 6.6 Stack Page Setting

Although the stack area used to evacuate registers during subroutine calls can be arbitrarily moved to any area in data RAM using the stack pointer SP, its page address is set in registers SPP0–SPP7 in I/O memory.

At initial reset, SPP0-SPP7 are set to "00H" (page 0).

Since the internal RAM is arranged on page 0 (00C000H–00DFFFH), the stack area in single chip mode is inevitably located in page 0. In order to place the stack area at the final address in internal RAM, the stack pointer SP is placed at an initial setting of "E000H". (SP is pre-decremented.)

In the expansion mode, to place the stack in external expanded RAM, set a corresponding page to SPP0–SPP7. The page addresses to which SPP0– SPP7 can be set are 00H–27H and must be within a RAM area.

\* A page is each recurrent 64K division of data memory beginning at address zero.

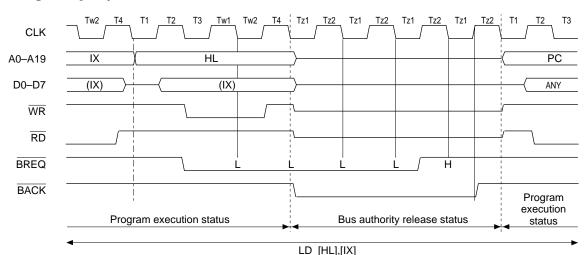



Fig. 6.5.1 Bus authority release sequence

## 6.7 Details of Control Registers

| Table 6.7.1 shows the control bits for the system control | coller. |
|-----------------------------------------------------------|---------|
|-----------------------------------------------------------|---------|

| Address | Bit      | Name     | Table 6.7.1 System controll<br>Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                              | 0           | SR | R/W      | Comment                 |
|---------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|----|----------|-------------------------|
| 00FF00  |          |          | Bus mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Expansion                      | Single chip | 0  | R/W      | Comment                 |
| (MCU)   |          |          | CPU mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum                        | Minimum     | 0  | R/W      |                         |
|         | D6<br>D5 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Iviaximum                      | winnmum     | 0  | K/W      | Constantly "0" when     |
|         | D5<br>D4 |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                              | _           | _  |          |                         |
|         |          | -<br>050 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                              | -           |    | -        | being read              |
|         |          | CE3      | $\overline{CE3}$ (R33) $\overline{CE}$ signal output Enable/Disable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CE3 enable                     | CE3 disable | 0  | R/W      | In Single chip mode,    |
|         |          | CE2      | $\overline{CE2}$ (R32)<br>Enable: $\overline{CE}$ signal output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CE2 enable                     | CE2 disable | 0  | R/W      | these setting are fixed |
|         |          | CE1      | (R31) Disable DC (R3x) output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CE1 enable                     | CE1 disable | 0  | R/W      | at DC output.           |
|         |          | CE0      | CE0 (R30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CE0 enable                     | CE0 disable | 0  | R/W      |                         |
| 00FF00  |          |          | Bus mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Expansion                      | -           | 1  | R        | Expansion mode only     |
| (MPU)   |          | CPUMOD   | CPU mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum                        | Minimum     | 0  | R/W      |                         |
|         | D5       | -        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                              | -           | -  | -        | Constantly "0" when     |
|         | D4       | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                              | -           | -  | -        | being read              |
|         | D3       | CE3      | $\overline{CE3}$ (R33) $\overline{CE}$ signal output Enable/Disable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\overline{\text{CE3}}$ enable | CE3 disable | 0  | R/W      |                         |
|         | D2       | CE2      | $\overline{CE2}$ (R32)<br>Enable: $\overline{CE}$ signal output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\overline{\text{CE2}}$ enable | CE2 disable | 0  | R/W      |                         |
|         | D1       | CE1      | ICEI (R31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\overline{CE1}$ enable        | CE1 disable | 0  | R/W      |                         |
|         | D0       | CE0      | $\overline{CE0}$ (R30) Disable: DC (R3x) output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\overline{\text{CE0}}$ enable | -           | 1  | R        |                         |
| 00FF01  | D7       | SPP7     | Stack pointer page address (MSB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                              | 0           | 0  | R/W      |                         |
|         | D6       | SPP6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                              | 0           | 0  | R/W      |                         |
|         | D5       | SPP5     | < SP page allocatable address >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                              | 0           | 0  | R/W      |                         |
|         | D4       | SPP4     | • Single chip mode: only 0 page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                              | 0           | 0  | R/W      |                         |
|         | D3       | SPP3     | • Expansion mode: 0–27H page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                              | 0           | 0  | R/W      |                         |
|         | D2       | SPP2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                              | 0           | 0  | R/W      |                         |
|         | D1       | SPP1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                              | 0           | 0  | R/W      |                         |
|         | D0       | SPP0     | (LSB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                              | 0           | 0  | R/W      |                         |
| 00FF02  | D7       | EBR      | Bus release enable register P24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BREQ                           | _           | 0  | R/W      |                         |
|         |          |          | (P24 and P25 terminal specification) P25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BACK                           | _           |    |          |                         |
|         | D6       | WT2      | Wait control register Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |             | 0  | R/W      |                         |
|         | _        |          | WT2 WT1 WT0 of state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |             | -  |          |                         |
|         |          |          | $\boxed{\begin{array}{c} \hline 1 \\ \hline 1 \\ \hline \end{array}} \\ \hline \begin{array}{c} \hline 1 \\ \hline 1 \\ \hline \end{array} \\ \hline \begin{array}{c} \hline 1 \\ \hline 1 \\ \hline \end{array} \\ \hline \begin{array}{c} \hline 1 \\ \hline 1 \\ \hline \end{array} \\ \hline \begin{array}{c} \hline 1 \\ \hline 1 \\ \hline \end{array} \\ \hline \begin{array}{c} \hline 1 \\ \hline 1 \\ \hline \end{array} \\ \hline \begin{array}{c} \hline 1 \\ \hline 1 \\ \hline \end{array} \\ \hline \begin{array}{c} \hline 1 \\ \hline 1 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$ |                                |             |    |          |                         |
|         | D5       | WT1      | 1 1 0 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |             | 0  | R/W      |                         |
|         | 00       |          | 1 0 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |             |    | 10,11    |                         |
|         |          |          | 1 0 0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |             |    |          |                         |
|         | D4       | WT0      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |             | 0  | R/W      |                         |
|         | 04       | **10     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |             |    | K/ W     |                         |
|         |          |          | $\begin{array}{cccccccc} 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & \text{No wait} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |             |    |          |                         |
|         | 20       |          | no wait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |             |    |          | "0"                     |
|         | D3       |          | -<br>CDU - normating - also de constale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                              | -           | -  | -<br>D/W | "0" when being read     |
|         |          |          | CPU operating clock switch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OSC3                           | OSC1        | 1  | R/W      | *1                      |
|         | D1       | SOSC3    | OSC3 oscillation On/Off control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | On                             | Off         | 1  | R/W      | *2                      |
|         | D0       | SOSC1    | OSC1 oscillation On/Off control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | On                             | Off         | 1  | R/W      | *3                      |

\*1 CLKCHG cannot be set to "0" when SOSC1 = "0" (OSC1 oscillation is OFF) and cannot be set to "1" when SOSC3 = "0" (OSC3 oscillation is OFF).

 $\ast 2~$  Cannot be turned OFF when the CPU is running with the OSC3 clock.

\*3 Cannot be turned OFF when the CPU is running with the OSC1 clock or the watchdog timer is enabled.

Note: All the interrupts including NMI are disabled, until you write the optional value into both the "00FF00H" and "00FF01H" addresses.

### BUSMOD, CPUMOD: 00FF00H•D7, D6

Bus mode and CPU mode are set as shown in Table 6.7.2.

| MCU/MPU      | Setting value |        | Ruc modo  | CPU mode   |
|--------------|---------------|--------|-----------|------------|
| terminal     | BUSMOD        | CPUMOD | Dus moue  | CFU IIIOUe |
| 1 (MCU mode) | 1             | 1      | Expansion | Maximum    |
|              | 1             | 0      |           | Minimum    |
|              | 0             | 1      | Single    | Maximum    |
|              | 0             | 0      | chip      | Minimum    |
| 0 (MPU mode) | 1             | 1      | Expansion | Maximum    |
|              | 1             | 0      |           | Minimum    |
|              | 0             | 1      |           | Maximum    |
|              | 0             | 0      |           | Minimum    |

Table 6.7.2 Bus mode and CPU mode settings

The single chip mode configuration is only possible when this IC is used in the MCU mode. The single chip mode setting is incompatible with the MPU mode, since this mode does not utilize internal ROM.

At initial reset, in the MCU mode the unit is set to single chip (minimum) mode and in the MPU mode the expansion (minimum) mode is used to select the applicable mode.

#### CE0-CE3: 00FF00H•D0-D3

Sets the  $\overline{CE}$  output terminals being used.

When "1" is written: $\overline{\text{CE}}$  output enableWhen "0" is written: $\overline{\text{CE}}$  output disableReading:Valid

 $\overline{\text{CE}}$  output is enabled when a "1" is written to registers CE0–CE3 which correspond to the  $\overline{\text{CE}}$ output being used. A "0" written to any of the registers disables  $\overline{\text{CE}}$  signal output from that terminal and it reverts to its alternate function as an output port terminal (R30–R33).

In the MPU mode, CE0 is fixed at "1" as a read-only register.

At initial reset, register CE0 is set to "0" in the MCU mode and in the MPU mode, "1" is set in the register. Registers CE1–CE3 are set to "0" regardless of the MCU/MPU mode setting.

Note: To avoid a malfunction from an interrupt generated before the bus configuration is initialized, all interrupts including  $\overline{NM}$  are masked until you write an optional value into address "00FF00H".

## SPP0-SPP7: 00FF01H

Sets the page address of stack area.

In single chip mode, set page address to "00H". In expansion mode, it can be set to any value within the range "00H"–"27H".

Since a carry and borrow from/to the stack pointer SP is not reflected in register SPP, the upper limit on continuous use of the stack area is 64K bytes. At initial reset, this register is set to "00H" (page 0).

Note: To avoid a malfunction from an interrupt generated before the bus configuration is initialized, all interrupts including NMI are disabled, until you write an optional value into "00FF01H" address. Furthermore, to avoid generating an interrupt while the stack area is being set, all interrupts including NMI are disabled in one instruction execution period after writing to address "00FF01H".

#### WT0-WT2: 00FF02H•D4-D6

How WAIT state settings are performed. The number of WAIT states to be inserted based on register settings is as shown in Table 6.7.3.

| Table 6.7.3 Setting WAIT states |     |     |                           |  |  |  |
|---------------------------------|-----|-----|---------------------------|--|--|--|
| WT2                             | WT1 | WT0 | Number of inserted states |  |  |  |
| 1                               | 1   | 1   | 14                        |  |  |  |
| 1                               | 1   | 0   | 12                        |  |  |  |
| 1                               | 0   | 1   | 10                        |  |  |  |
| 1                               | 0   | 0   | 8                         |  |  |  |
| 0                               | 1   | 1   | 6                         |  |  |  |
| 0                               | 1   | 0   | 4                         |  |  |  |
| 0                               | 0   | 1   | 2                         |  |  |  |
| 0                               | 0   | 0   | No wait                   |  |  |  |

Table 6.7.3 Setting WAIT states

\* The length of one state is a 1/2 clock cycle.

At initial reset, this register is set to "0" (no wait).

#### EBR: 00FF02H•D7

Sets the  $\overline{BREQ}/\overline{BACK}$  terminals function.

When "1" is written:BREQ/BACK enabledWhen "0" is written:BREQ/BACK disabledReading:Valid

How BREQ and BACK terminal functions are set. Writing "1" to EBR enables BREQ/BACK input/ output. Writing "0" sets the BREQ terminal as the P24 port terminal and the BACK terminal as the P25 port terminal.

At initial reset, EBR is set to "0" ( $\overline{BREQ}/\overline{BACK}$  disabled).

## 6.8 Precautions

- (1) All the interrupts including NMI are masked, until you write the optional value into both the "00FF00H" and "00FF01H" addresses. Consequently, even if you do not change the content of this address (You use the initial value, as is.), you should still be sure to perform the writing operation using the initialization routine.
- (2) When setting stack fields, including page addresses as well, you should write them in the order of the register SPP ("00FF01H") and the stack pointer SP.

Example: When setting the "178000H" address

- LD EP, #00H
- LD HL, #0FF01H During this period the
- LD [HL], #17H During this period the interrupts (including
- LD SP, #8000H  $\square$   $\frac{\text{Middle}}{\text{NMI}}$  are masked.

# 7 INTERRUPT AND STANDBY STATUS

## Types of interrupts

4 systems and 34 types of interrupts have been provided for the S1C88655.

#### External interrupt

•P20-P27 input interrupt (8 types)

## Internal interrupt

- Clock timer interrupt (4 types)
- Programmable timer interrupt (16 types)
- Serial interface interrupt (6 types)

Each interrupt source provides an interrupt factor flag that indicates occurrence of an interrupt factor and an interrupt enable register that enables/disables interrupt requests for controlling interrupt generation. In addition, an interrupt priority register has been provided for each interrupt system allowing interrupt handler routines to set the priority of each interrupt system to 3 levels.

Figure 7.1 shows the configuration of the interrupt circuit.

Refer to the explanations of the respective peripheral circuits for details on each interrupt.

## HALT mode

When the program executes the HALT instruction, the S1C88655 enters HALT mode. Since the CPU stops operating in HALT mode, power consumption can be reduced with only peripheral circuit operation.

The HALT mode is cancelled by initial reset or an interrupt request, and the CPU restarts program execution from an exception handler routine.

See the "S1C88 Core CPU Manual" for the HALT mode and reactivation sequence.

### SLEEP mode

When the program executes the SLP instruction, the S1C88655 enters SLEEP mode. Since the CPU and peripheral circuits stop operating completely in SLEEP mode, power consumption can be reduced even more than in HALT mode.

The SLEEP mode is cancelled by initial reset or an input interrupt from the port. The CPU reactivates after waiting 128/fosc1 or 512/fosc3 seconds of oscillation stabilization time (the oscillation stabilization time varies depending on the operating clock being used when the SLP instruction is executed). At this time, the CPU restarts program execution from an exception handler routine (input interrupt routine).

Note: The oscillation becomes unstable for a while after SLEEP status is cancelled, the wait time for restarting the CPU may be longer than 128/fosc1 or 512/fosc3 seconds.

# 7.1 Interrupt Generation Conditions

The interrupt factor flags that indicate occurrence of their respective interrupt factors are provided for the previously indicated 4 systems and 34 types of interrupts. They will be set to "1" when the corresponding interrupt factor occurs. In addition, interrupt enable registers with a 1 to 1

correspondence to each of the interrupt factor flags are provided. An interrupt is enabled when "1" is written and interrupt is disabled when "0" is written.

The CPU manages the enable/disable of interrupt requests at the interrupt priority level. An interrupt priority register that sets the priority level is provided for each of the interrupts of the 4 systems and the CPU accepts only interrupts above the level that has been indicated with the interrupt flags (I0 and I1).

Consequently, the following three conditions are necessary for the CPU to accept the interrupt.

- (1) The interrupt factor flag has been set to "1" by generation of an interrupt factor.
- (2) The interrupt enable register corresponding to the above has been set to "1".
- (3) The interrupt priority register corresponding to the above has been set to a priority level higher than the interrupt flag (I0 and I1) setting.

The CPU initially samples the interrupt for the first op-code fetch cycle of each instruction. Thereupon, the CPU shifts to the exception processing when the above mentioned conditions have been established. See the "S1C88 Core CPU Manual" for the exception processing sequence.

#### **7 INTERRUPT AND STANDBY STATUS**

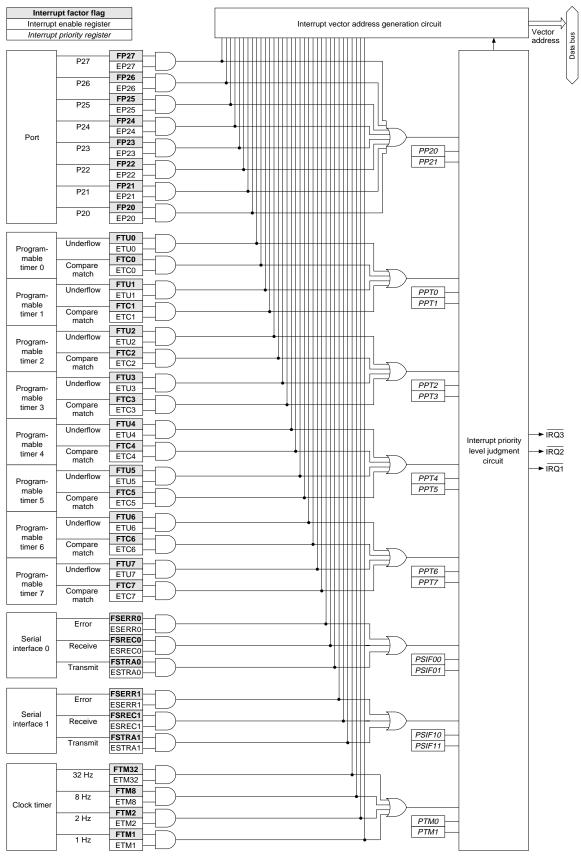



Fig. 7.1 Configuration of interrupt circuit

## 7.2 Interrupt Factor Flag

Table 7.2.1 shows the correspondence between the factors generating an interrupt and the interrupt factor flags.

The corresponding interrupt factor flags are set to "1" by generation of the respective interrupt factors. The corresponding interrupt factor can be confirmed by reading the flags through software. Interrupt factor flag that has been set to "1" is reset to "0" by writing "1".

At initial reset, the interrupt factor flags are reset to "0".

Note: When executing the RETE instruction without resetting the interrupt factor flag after an interrupt has been generated, the same interrupt will be generated. Consequently, the interrupt factor flag corresponding to that routine must be reset (writing "1") in the interrupt processing routine.

| Interrupt factor                                             | Interrupt | factor flag |
|--------------------------------------------------------------|-----------|-------------|
| P27 input (falling edge or rising edge specified with PCP27) | FP27      | 00FF1AH·D7  |
| P26 input (falling edge or rising edge specified with PCP26) | FP26      | 00FF1AH·D6  |
| P25 input (falling edge or rising edge specified with PCP25) | FP25      | 00FF1AH·D5  |
| P24 input (falling edge or rising edge specified with PCP24) | FP24      | 00FF1AH·D4  |
| P23 input (falling edge or rising edge specified with PCP23) | FP23      | 00FF1AH·D3  |
| P22 input (falling edge or rising edge specified with PCP22) | FP22      | 00FF1AH·D2  |
| P21 input (falling edge or rising edge specified with PCP21) | FP21      | 00FF1AH·D1  |
| P20 input (falling edge or rising edge specified with PCP20) | FP20      | 00FF1AH·D0  |
| Programmable timer 0 compare match                           | FTC0      | 00FF1BH·D0  |
| Programmable timer 0 underflow                               | FTU0      | 00FF1BH·D1  |
| Programmable timer 1 underflow                               | FTU1      | 00FF1BH·D2  |
| Programmable timer 1 compare match                           | FTC1      | 00FF1BH·D3  |
| Programmable timer 2 underflow                               | FTU2      | 00FF1BH·D4  |
| Programmable timer 2 compare match                           | FTC2      | 00FF1BH·D5  |
| Programmable timer 3 underflow                               | FTU3      | 00FF1BH·D6  |
| Programmable timer 3 compare match                           | FTC3      | 00FF1BH·D7  |
| Programmable timer 4 underflow                               | FTU4      | 00FF1EH·D0  |
| Programmable timer 4 compare match                           | FTC4      | 00FF1EH·D1  |
| Programmable timer 5 underflow                               | FTU5      | 00FF1EH·D2  |
| Programmable timer 5 compare match                           | FTC5      | 00FF1EH·D3  |
| Programmable timer 6 underflow                               | FTU6      | 00FF1EH·D4  |
| Programmable timer 6 compare match                           | FTC6      | 00FF1EH·D5  |
| Programmable timer 7 underflow                               | FTU7      | 00FF1EH·D6  |
| Programmable timer 7 compare match                           | FTC7      | 00FF1EH·D7  |
| Serial interface 0 receiving error (in asynchronous mode)    | FSERR0    | 00FF1CH·D2  |
| Serial interface 0 receiving completion                      | FSREC0    | 00FF1CH·D1  |
| Serial interface 0 transmitting completion                   | FSTRA0    | 00FF1CH·D0  |
| Serial interface 1 receiving error (in asynchronous mode)    | FSERR1    | 00FF1CH·D5  |
| Serial interface 1 receiving completion                      | FSREC1    | 00FF1CH·D4  |
| Serial interface 1 transmitting completion                   | FSTRA1    | 00FF1CH·D3  |
| Clock timer 32 Hz signal (falling edge)                      | FTM32     | 00FF1DH·D3  |
| Clock timer 8 Hz signal (falling edge)                       | FTM8      | 00FF1DH·D2  |
| Clock timer 2 Hz signal (falling edge)                       | FTM2      | 00FF1DH·D1  |
| Clock timer 1 Hz signal (falling edge)                       | FTM1      | 00FF1DH·D0  |

Table 7.2.1 Interrupt factors

## 7.3 Interrupt Enable Register

The interrupt enable register has a 1 to 1 correspondence with each interrupt factor flag and enable/ disable of interrupt requests can be set.

When "1" is written to the interrupt enable register, an interrupt request is enabled, and is disabled when "0" is written. This register also permits reading, thus making it possible to confirm that a status has been set. At initial reset, the interrupt enable registers are set to "0" and shifts to the interrupt disable status. Table 7.3.1 shows the correspondence between the interrupt enable registers and the interrupt factor flags.

| Interrupt                                  | Interrupt | factor flag | Interrupt enable register |            |  |
|--------------------------------------------|-----------|-------------|---------------------------|------------|--|
| P27 input                                  | FP27      | 00FF1AH·D7  | EP27                      | 00FF14H·D7 |  |
| P26 input                                  | FP26      | 00FF1AH·D6  | EP26                      | 00FF14H·D6 |  |
| P25 input                                  | FP25      | 00FF1AH·D5  | EP25                      | 00FF14H·D5 |  |
| P24 input                                  | FP24      | 00FF1AH·D4  | EP24                      | 00FF14H·D4 |  |
| P23 input                                  | FP23      | 00FF1AH·D3  | EP23                      | 00FF14H·D3 |  |
| P22 input                                  | FP22      | 00FF1AH·D2  | EP22                      | 00FF14H·D2 |  |
| P21 input                                  | FP21      | 00FF1AH·D1  | EP21                      | 00FF14H·D1 |  |
| P20 input                                  | FP20      | 00FF1AH·D0  | EP20                      | 00FF14H·D0 |  |
| Timer 0 compare match                      | FTC0      | 00FF1BH·D0  | ETC0                      | 00FF15H·D0 |  |
| Timer 0 underflow                          | FTU0      | 00FF1BH·D1  | ETU0                      | 00FF15H·D1 |  |
| Timer 1 underflow                          | FTU1      | 00FF1BH·D2  | ETU1                      | 00FF15H·D2 |  |
| Timer 1 compare match                      | FTC1      | 00FF1BH·D3  | ETC1                      | 00FF15H·D3 |  |
| Timer 2 underflow                          | FTU2      | 00FF1BH·D4  | ETU2                      | 00FF15H·D4 |  |
| Timer 2 compare match                      | FTC2      | 00FF1BH·D5  | ETC2                      | 00FF15H·D5 |  |
| Timer 3 underflow                          | FTU3      | 00FF1BH·D6  | ETU3                      | 00FF15H·D6 |  |
| Timer 3 compare match                      | FTC3      | 00FF1BH·D7  | ETC3                      | 00FF15H·D7 |  |
| Timer 4 underflow                          | FTU4      | 00FF1EH·D0  | ETU4                      | 00FF18H·D0 |  |
| Timer 4 compare match                      | FTC4      | 00FF1EH·D1  | ETC4                      | 00FF18H·D1 |  |
| Timer 5 underflow                          | FTU5      | 00FF1EH·D2  | ETU5                      | 00FF18H·D2 |  |
| Timer 5 compare match                      | FTC5      | 00FF1EH·D3  | ETC5                      | 00FF18H·D3 |  |
| Timer 6 underflow                          | FTU6      | 00FF1EH·D4  | ETU6                      | 00FF18H·D4 |  |
| Timer 6 compare match                      | FTC6      | 00FF1EH·D5  | ETC6                      | 00FF18H·D5 |  |
| Timer 7 underflow                          | FTU7      | 00FF1EH·D6  | ETU7                      | 00FF18H·D6 |  |
| Timer 7 compare match                      | FTC7      | 00FF1EH·D7  | ETC7                      | 00FF18H·D7 |  |
| Serial interface 0 receiving error         | FSERR0    | 00FF1CH·D2  | ESERR0                    | 00FF16H·D2 |  |
| Serial interface 0 receiving completion    | FSREC0    | 00FF1CH·D1  | ESREC0                    | 00FF16H·D1 |  |
| Serial interface 0 transmitting completion | FSTRA0    | 00FF1CH·D0  | ESTRA0                    | 00FF16H·D0 |  |
| Serial interface 1 receiving error         | FSERR1    | 00FF1CH·D5  | ESERR1                    | 00FF16H·D5 |  |
| Serial interface 1 receiving completion    | FSREC1    | 00FF1CH·D4  | ESREC1                    | 00FF16H·D4 |  |
| Serial interface 1 transmitting completion | FSTRA1    | 00FF1CH·D3  | ESTRA1                    | 00FF16H·D3 |  |
| Clock timer 32 Hz                          | FTM32     | 00FF1DH·D3  | ETM32                     | 00FF17H·D3 |  |
| Clock timer 8 Hz                           | FTM8      | 00FF1DH·D2  | ETM8                      | 00FF17H·D2 |  |
| Clock timer 2 Hz                           | FTM2      | 00FF1DH·D1  | ETM2                      | 00FF17H·D1 |  |
| Clock timer 1 Hz                           | FTM1      | 00FF1DH·D0  | ETM1                      | 00FF17H·D0 |  |

Table 7.3.1 Interrupt enable registers and interrupt factor flags

| 7.4 | Interrupt Priority | Register an | d Interrupt Priority Level |
|-----|--------------------|-------------|----------------------------|
|-----|--------------------|-------------|----------------------------|

| Tuble 7.4.1 Interrupt priority register |                |                |  |  |  |
|-----------------------------------------|----------------|----------------|--|--|--|
| Interrupt                               | Interrupt pri  | ority register |  |  |  |
| P20–P27 input interrupt                 | PP20, PP21     | 00FF10·D0, D1  |  |  |  |
| Programmable timer interrupt 1–0        | PPT0, PPT1     | 00FF10·D4, D5  |  |  |  |
| Programmable timer interrupt 3–2        | PPT2, PPT3     | 00FF10·D2, D3  |  |  |  |
| Programmable timer interrupt 5-4        | PPT4, PPT5     | 00FF11·D6, D7  |  |  |  |
| Programmable timer interrupt 7–6        | PPT6, PPT7     | 00FF11·D4, D5  |  |  |  |
| Serial interface 0 interrupt            | PSIF00, PSIF01 | 00FF10·D6, D7  |  |  |  |
| Serial interface 1 interrupt            | PSIF10, PSIF11 | 00FF11·D0, D1  |  |  |  |
| Clock timer interrupt                   | PTM0, PTM1     | 00FF11·D2, D3  |  |  |  |

Table 7.4.1 Interrupt priority register

The interrupt priority registers shown in Table 7.4.1 are provided for each system of interrupts and the interrupt priority levels for the CPU can be set to the optional priority level (0–3). As a result, it is possible to have multiple interrupts that match the system's interrupt processing priority levels.

The interrupt priority level between each system can optionally be set to three levels by the interrupt priority register. However, when more than one system is set to the same priority level, they are processed according to the default priority level.

| <i>Table 7.4.2</i> | Setting | of interrupt | priority level |
|--------------------|---------|--------------|----------------|
|                    |         |              |                |

| P*1 | P*0 | Interrupt priority level    |  |  |  |
|-----|-----|-----------------------------|--|--|--|
| 1   | 1   | Level 3 (IRQ3)              |  |  |  |
| 1   | 0   | Level 2 $(\overline{IRQ2})$ |  |  |  |
| 0   | 1   | Level 1 $(\overline{IRQ1})$ |  |  |  |
| 0   | 0   | Level 0 (None)              |  |  |  |

At initial reset, the interrupt priority registers are all set to "0" and each interrupt is set to level 0. Furthermore, the priority levels in each system have been previously decided and they cannot be changed.

The CPU can mask each interrupt by setting the interrupt flags (I0 and I1). The relation between the interrupt priority level of each system and interrupt flags is shown in Table 7.4.3, and the CPU accepts only interrupts above the level indicated by the interrupt flags.

The  $\overline{\text{NMI}}$  (watchdog timer) that has level 4 priority, is always accepted regardless of the setting of the interrupt flags.

| Table 7.4.3 | Interrupt | mask | setting | of CPU |
|-------------|-----------|------|---------|--------|
|-------------|-----------|------|---------|--------|

| 1 | 10 | Acceptable interrupt                                   |
|---|----|--------------------------------------------------------|
| 1 | 1  | Level 4 (MII)                                          |
| 1 | 0  | Level 4, Level 3 (IRQ3)                                |
| 0 | 1  | Level 4, Level 3, Level 2 (IRQ2)                       |
| 0 | 0  | Level 4, Level 3, Level 2, Level 1 $(\overline{IRQ1})$ |

After an interrupt has been accepted, the interrupt flags are written to the level of that interrupt. However, interrupt flags after an  $\overline{\text{NMI}}$  has been accepted are written to level 3 (I0 = I1 = "1").

| Table 7.4.4 | Interrupt flags | after acceptance | of interrupt |
|-------------|-----------------|------------------|--------------|
|-------------|-----------------|------------------|--------------|

| Accepted interrupt | priority level         | I1 | 10 |
|--------------------|------------------------|----|----|
| Level 4            | $(\overline{\rm NMI})$ | 1  | 1  |
| Level 3            | (IRQ3)                 | 1  | 1  |
| Level 2            | $(\overline{IRQ2})$    | 1  | 0  |
| Level 1            | $(\overline{IRQ1})$    | 0  | 1  |

The set interrupt flags are reset to their original value on return from the interrupt processing routine. Consequently, multiple interrupts up to 3 levels can be controlled by the initial settings of the interrupt priority registers alone. Additional multiplexing can be realized by rewriting the interrupt flags and interrupt enable register in the interrupt processing routine.

Note: Beware. If the interrupt flags have been rewritten (set to lower priority) prior to resetting an interrupt factor flag after an interrupt has been generated, the same interrupt will be generated again.

# 7.5 Exception Processing Vectors

When the CPU accepts an interrupt request, it starts exception processing following completion of the instruction being executed. In exception processing, the following operations branch the program.

- (1) In the minimum mode, the program counter (PC) and system condition flag (SC) are moved to stack and in the maximum mode, the code bank register (CB), PC and SC are moved.
- (2) The branch destination address is read from the exception processing vector corresponding to each exception processing (interrupt) factor and is placed in the PC.

An exception vector is 2 bytes of data in which the top address of each exception (interrupt) processing routine has been stored and the vector addresses correspond to the exception processing factors as shown in Table 7.5.1.

Note: An exception processing vector is fixed at 2 bytes, so it cannot specify a branch destination bank address. Consequently, to branch from multiple banks to a common exception processing routine, the top portion of an exception processing routine must be described within the common area (000000H–007FFFH).

Table 7.5.1 Vector address and exception processing correspondence

| r                   | processing correspondence                    |              |
|---------------------|----------------------------------------------|--------------|
| Vector<br>address   | Exception processing factor                  | Priority     |
| 000000H             | Reset                                        | High         |
|                     |                                              | High<br>↑    |
| 000002H             | Zero division                                | I            |
| 000004H             | Watchdog timer (NMI)                         |              |
| 000006H             | P27 input interrupt                          |              |
| 000008H             | P26 input interrupt                          |              |
| 00000AH             | P25 input interrupt                          |              |
| 00000CH             | P24 input interrupt                          |              |
| 00000EH             | P23 input interrupt                          |              |
| 000010H             | P22 input interrupt                          |              |
| 000012H             | P21 input interrupt                          |              |
| 000014H             | P20 input interrupt                          |              |
| 000016H             | PTM 3 compare match interrupt                |              |
| 000018H             | PTM 3 underflow interrupt                    |              |
| 00001AH             | PTM 2 compare match interrupt                |              |
| 00001CH             | PTM 2 underflow interrupt                    |              |
| 00001EH             | PTM 1 compare match interrupt                |              |
| 000020H             | PTM 1 underflow interrupt                    |              |
| 000022H             | PTM 0 underflow interrupt                    |              |
| 000024H             | PTM 0 compare match interrupt                |              |
| 000026H             | Serial I/F 0 error interrupt                 |              |
| 000028H             | Serial I/F 0 receiving complete interrupt    |              |
| 00002AH             | Serial I/F 0 transmitting complete interrupt |              |
| 00002CH             | Serial I/F 1 error interrupt                 |              |
| 00002EH             | Serial I/F 1 receiving complete interrupt    |              |
| 000030H             | Serial I/F 1 transmitting complete interrupt |              |
| 000032H             | Clock timer 32 Hz interrupt                  |              |
| 000034H             | Clock timer 8 Hz interrupt                   |              |
| 000036H             | Clock timer 2 Hz interrupt                   |              |
| 000038H             | Clock timer 1 Hz interrupt                   |              |
| 00003AH             | PTM 7 compare match interrupt                |              |
| 00003CH             | PTM 7 underflow interrupt                    |              |
| 00003EH             | PTM 6 compare match interrupt                |              |
| 00003LH             | PTM 6 underflow interrupt                    |              |
| 000042H             | PTM 5 compare match interrupt                |              |
| 000042H             | PTM 5 underflow interrupt                    |              |
| 000044H             | PTM 4 compare match interrupt                | $\downarrow$ |
| 000040H             | PTM 4 underflow interrupt                    | ↓<br>Low     |
| 00004311<br>00004AH | System reserved (cannot be used)             | LOW          |
| 00004AH<br>00004CH  | System reserved (cannot be used)             | No           |
|                     | Software interrupt                           | priority     |
| 0000FEH             | Sortware interrupt                           | rating       |
| OUUUFEH             |                                              |              |

# 7.6 Details of Control Registers

Table 7.6.1 shows the interrupt control bits.

Table 7.6.1(a) Interrupt control bits

| Address | Bit | Name   | Function                                       | 1              |                     | 0                  | SR  | R/W    | Comment             |
|---------|-----|--------|------------------------------------------------|----------------|---------------------|--------------------|-----|--------|---------------------|
| 00FF10  | D7  | PSIF01 | Serial interface 0 interrupt priority register | DOIE01         | DOID                | 200                | 0   | R/W    |                     |
|         | D6  | PSIF00 |                                                | PSIF01<br>PPT1 | PSIF                |                    | 0   | K/W    |                     |
|         | D5  | PPT1   | Programmable timer 1–0 interrupt               |                |                     |                    | 0   | R/W    |                     |
|         | D4  | PPT0   | priority register                              | PP21           | PP2                 | 0 level            | 0   | K/W    |                     |
|         | D3  | PPT3   | Programmable timer 3–2 interrupt               | 1              | 1                   | Level 3            | 0   | R/W    |                     |
|         | D2  | PPT2   | priority register                              | 1              | 0                   | Level 2<br>Level 1 | 0   | K/ W   |                     |
|         | D1  | PP21   | P20–P27 interrupt priority register            | 0              | 1<br>0              | Level 1<br>Level 0 | 0   | R/W    |                     |
|         | D0  | PP20   |                                                | Ŭ              | 0                   |                    | 0   | K/ W   |                     |
| 00FF11  | D7  | PPT5   | Programmable timer 5–4 interrupt               | DDT5           | DDT                 |                    | 0   | R/W    |                     |
|         | D6  | PPT4   | priority register                              | PPT5<br>PPT7   | PPT<br>PPT          |                    | 0   | K/ W   |                     |
|         | D5  | PPT7   | Programmable timer 7–6 interrupt               | PTM1           |                     | 10 Priority        | 0   | R/W    |                     |
|         | D4  | PPT6   | priority register                              | PSIF11         | PSIF                | 10 level           | 0   | K/ W   |                     |
|         | D3  | PTM1   | Clock timer interrupt priority register        | 1              | 1                   | Level 3            | 0   | R/W    |                     |
|         | D2  | PTM0   |                                                | 1              | 0                   | Level 2<br>Level 1 | 0   | K/ W   |                     |
|         | D1  | PSIF11 | Serial interface 1 interrupt priority register |                | 0                   | Level 0            | 0   | R/W    |                     |
|         | D0  | PSIF10 |                                                |                | -                   |                    | 0   | 10/ W  |                     |
| 00FF14  | D7  | EP27   | P27 interrupt enable                           |                |                     |                    |     |        |                     |
|         | D6  | EP26   | P26 interrupt enable                           |                |                     |                    |     |        |                     |
|         | D5  | EP25   | P25 interrupt enable                           |                |                     |                    |     |        |                     |
|         | D4  | EP24   | P24 interrupt enable                           | Interr         | Interrupt Interrupt | 0                  | R/W |        |                     |
|         | D3  | EP23   | P23 interrupt enable                           | enat           | ole                 | disable            |     | 10/ 11 |                     |
|         |     | EP22   | P22 interrupt enable                           |                |                     |                    |     |        |                     |
|         | D1  | EP21   | P21 interrupt enable                           |                |                     |                    |     |        |                     |
|         | D0  | EP20   | P20 interrupt enable                           |                |                     |                    |     |        |                     |
| 00FF15  | D7  | ETC3   | PTM3 compare match interrupt enable            |                |                     |                    |     |        |                     |
|         | D6  | ETU3   | PTM3 underflow interrupt enable                |                |                     |                    |     |        |                     |
|         |     | ETC2   | PTM2 compare match interrupt enable            |                |                     |                    |     |        |                     |
|         |     | ETU2   | PTM2 underflow interrupt enable                | Interr         | rupt                | Interrupt          | 0   | R/W    |                     |
|         |     | ETC1   | PTM1 compare match interrupt enable            | enat           | ole                 | disable            |     | 10     |                     |
|         |     | ETU1   | PTM1 underflow interrupt enable                |                |                     |                    |     |        |                     |
|         |     | ETU0   | PTM0 underflow interrupt enable                |                |                     |                    |     |        |                     |
|         |     | ETC0   | PTM0 compare match interrupt enable            |                |                     |                    |     |        |                     |
| 00FF16  | D7  | -      | _                                              | -              |                     | -                  | -   | R      | Constantly "0" when |
|         | D6  | -      | _                                              | -              |                     | -                  | -   | R      | being read          |
|         |     |        | Serial I/F 1 (error) interrupt enable          |                |                     |                    |     |        |                     |
|         |     |        | Serial I/F 1 (receive) interrupt enable        |                |                     |                    | 0   | R/W    |                     |
|         |     |        | Serial I/F 1 (transmit) interrupt enable       | Interr         | -                   | Interrupt          |     |        |                     |
|         |     |        | Serial I/F 0 (error) interrupt enable          | enat           | ole                 | disable            |     |        |                     |
|         |     |        | Serial I/F 0 (receive) interrupt enable        |                |                     |                    | 0   | R/W    |                     |
|         |     | ESTRA0 | Serial I/F 0 (transmit) interrupt enable       |                |                     |                    |     |        |                     |
| 00FF17  | D7  | -      |                                                | -              |                     | _                  | -   | R      | Constantly "0" when |
|         | D6  |        |                                                | -              |                     | _                  | -   | R      | being read          |
|         | D5  |        | -                                              | -              |                     | -                  | -   | R      |                     |
|         | D4  |        |                                                | -              |                     | -                  | -   | R      |                     |
|         |     | ETM32  | Clock timer 32 Hz interrupt enable             |                |                     | _                  |     |        |                     |
|         |     | ETM8   | Clock timer 8 Hz interrupt enable              | Interr         |                     | Interrupt          | 0   | R/W    |                     |
|         |     | ETM2   | Clock timer 2 Hz interrupt enable              | enat           | ole                 | disable            |     |        |                     |
|         | D0  | ETM1   | Clock timer 1 Hz interrupt enable              |                |                     |                    |     |        |                     |

| Address | Bit                                   | Name   | Table 7.6.1(b) Interrupt of Function                                   | 1                | 0                   | SR | R/W    | Comment             |
|---------|---------------------------------------|--------|------------------------------------------------------------------------|------------------|---------------------|----|--------|---------------------|
| 00FF18  |                                       |        | PTM7 compare match interrupt enable                                    | 1                | 0                   | 01 | 1.7.00 | Comment             |
| 006610  | · · · · · · · · · · · · · · · · · · · |        | PTM7 compare match interrupt enable<br>PTM7 underflow interrupt enable |                  |                     |    |        |                     |
| D6 ETC7 |                                       |        | PTM6 compare match interrupt enable                                    |                  |                     |    |        |                     |
|         |                                       | ETU6   |                                                                        | <b>T</b>         | T                   |    |        |                     |
|         |                                       | ETC5   | PTM6 underflow interrupt enable                                        | Interrupt        | Interrupt           | 0  | R/W    |                     |
|         |                                       |        | PTM5 compare match interrupt enable                                    | enable           | disable             |    |        |                     |
|         |                                       | ETU5   | PTM5 underflow interrupt enable                                        |                  |                     |    |        |                     |
|         |                                       | ETC4   | PTM4 compare match interrupt enable                                    |                  |                     |    |        |                     |
| 00554.4 |                                       | ETU4   | PTM4 underflow interrupt enable                                        | (D)              |                     |    |        |                     |
| 00FF1A  |                                       | FP27   | P27 interrupt factor flag                                              | (R)              | (R)                 |    |        |                     |
|         |                                       | FP26   | P26 interrupt factor flag                                              | Interrupt        | No interrupt        |    |        |                     |
|         |                                       | FP25   | P25 interrupt factor flag                                              | factor is        | factor is           |    |        |                     |
|         |                                       | FP24   | P24 interrupt factor flag                                              | occurred         | occurred            | 0  | R/W    |                     |
|         |                                       | FP23   | P23 interrupt factor flag                                              |                  |                     |    |        |                     |
|         |                                       | FP22   | P22 interrupt factor flag                                              | (W)              | (W)                 |    |        |                     |
|         |                                       | FP21   | P21 interrupt factor flag                                              | Reset            | No operation        |    |        |                     |
|         |                                       | FP20   | P20 interrupt factor flag                                              |                  |                     |    |        |                     |
| 00FF1B  |                                       | FTC3   | PTM3 compare match interrupt factor flag                               | (R)              | (R)                 |    |        |                     |
|         |                                       | FTU3   | PTM3 underflow interrupt factor flag                                   | Interrupt        | No interrupt        |    |        |                     |
|         |                                       | FTC2   | PTM2 compare match interrupt factor flag                               | factor is        | factor is           |    |        |                     |
|         |                                       | FTU2   | PTM2 underflow interrupt factor flag                                   | occurred         | occurred            | 0  | R/W    |                     |
|         |                                       | FTC1   | PTM1 compare match interrupt factor flag                               |                  |                     | -  |        |                     |
|         |                                       | FTU1   | PTM1 underflow interrupt factor flag                                   | (W)              | (W)                 |    |        |                     |
|         |                                       | FTU0   | PTM0 underflow interrupt factor flag                                   | Reset            | No operation        |    |        |                     |
|         |                                       | FTC0   | PTM0 compare match interrupt factor flag                               |                  |                     |    |        |                     |
| 00FF1C  | D7                                    | -      | -                                                                      | -                | -                   | -  | R      | Constantly "0" when |
|         | D6                                    | -      | -                                                                      | -                | -                   | -  | R      | being read          |
|         |                                       |        | Serial I/F 1 (error) interrupt factor flag                             | (R)<br>Interrupt | (R)<br>No interrupt |    |        |                     |
|         |                                       |        | Serial I/F 1 (receive) interrupt factor flag                           | factor is        | factor is           | 0  | R/W    |                     |
|         |                                       |        | Serial I/F 1 (transmit) interrupt factor flag                          | occurred         | occurred            |    |        |                     |
|         |                                       |        | Serial I/F 0 (error) interrupt factor flag                             | (W)              | (W)                 |    |        |                     |
|         |                                       |        | Serial I/F 0 (receive) interrupt factor flag                           | Reset            | No operation        | 0  | R/W    |                     |
|         | D0                                    | FSTRA0 | Serial I/F 0 (transmit) interrupt factor flag                          | Reset            | rio operation       |    |        |                     |
| 00FF1D  | D7                                    | -      |                                                                        | -                | -                   | _  | R      | Constantly "0" when |
|         | D6                                    | -      |                                                                        | -                | -                   | _  | R      | being read          |
|         | D5                                    | -      | -                                                                      | -                | -                   | -  | R      |                     |
|         | D4                                    | -      | -                                                                      | -                | -                   | -  | R      |                     |
|         | D3                                    | FTM32  | Clock timer 32 Hz interrupt factor flag                                | (R)              | (R)                 |    |        |                     |
|         | D2                                    | FTM8   | Clock timer 8 Hz interrupt factor flag                                 | Occurred         | Not occurred        | 0  | R/W    |                     |
|         | D1                                    | FTM2   | Clock timer 2 Hz interrupt factor flag                                 | (W)              | (W)                 | 0  |        |                     |
|         | D0                                    | FTM1   | Clock timer 1 Hz interrupt factor flag                                 | Reset            | No operation        |    |        |                     |
| 00FF1E  | D7                                    | FTC7   | PTM7 compare match interrupt factor flag                               | (R)              | (R)                 |    |        |                     |
|         |                                       | FTU7   | PTM7 underflow interrupt factor flag                                   | Interrupt        | No interrupt        |    |        |                     |
|         | D5                                    | FTC6   | PTM6 compare match interrupt factor flag                               | factor is        | factor is           |    |        |                     |
|         | D4                                    | FTU6   | PTM6 underflow interrupt factor flag                                   | occurred         | occurred            | 0  | D/117  |                     |
|         | D3                                    | FTC5   | PTM5 compare match interrupt factor flag                               |                  |                     | U  | R/W    |                     |
|         | D2                                    | FTU5   | PTM5 underflow interrupt factor flag                                   | (W)              | (W)                 |    |        |                     |
|         | D1                                    | FTC4   | PTM4 compare match interrupt factor flag                               | Reset            | No operation        |    |        |                     |
|         |                                       |        |                                                                        | 1                | 1                   |    | 1      | 1                   |

*Table 7.6.1(b) Interrupt control bits* 

#### *P\*0*, *P\*1: 00FF10H-00FF11H*

These are the interrupt priority registers used to set the priority level of each interrupt system. Table 7.6.2 shows the correspondence between the register and interrupt system.

| Table 7.6.2 | Interrupt | priority | registers |
|-------------|-----------|----------|-----------|
|-------------|-----------|----------|-----------|

| Re             | gister          | Interrupt system        |
|----------------|-----------------|-------------------------|
| PP20, PP21     | (00FF10·D0, D1) | P20-P27 input           |
| PPT0, PPT1     | (00FF10·D4, D5) | Programmable timers 1-0 |
| PPT2, PPT3     | (00FF10·D2, D3) | Programmable timers 3–2 |
| PPT4, PPT5     | (00FF11·D6, D7) | Programmable timers 5-4 |
| PPT6, PPT7     | (00FF11·D4, D5) | Programmable timers 7-6 |
| PSIF00, PSIF01 | (00FF10·D6, D7) | Serial interface 0      |
| PSIF10, PSIF11 | (00FF11·D0, D1) | Serial interface 1      |
| PTM0, PTM1     | (00FF11·D2, D3) | Clock timer             |

Table 7.6.3 shows the interrupt priority level that can be set by these registers.

| Table 7.6.3 | Setting | interrupt | priority | level |
|-------------|---------|-----------|----------|-------|
|-------------|---------|-----------|----------|-------|

| 1 | D:14 | Dite |                          |
|---|------|------|--------------------------|
|   | P*1  | P*0  | Interrupt priority level |
|   | 1    | 1    | Level 3 (IRQ3)           |
|   | 1    | 0    | Level 2 (IRQ2)           |
|   | 0    | 1    | Level 1 (IRQ1)           |
|   | 0    | 0    | Level 0 (None)           |

To generate an interrupt, the priority level of the interrupt system must be set higher than the level set with the CPU's interrupt flag (I0, I1) using the interrupt priority register.

Furthermore, when two or more interrupts occur at the same time, the interrupt that has the highest priority set using this register is processed first. If they have the same priority level, the priority order set to the interrupt vectors (see Table 7.5.1) are applied.

At initial reset, the interrupt priority registers are set to "0" (level 0).

## *E\*: 00FF14H-00FF18H*

These are the interrupt enable registers that enable or disable to generate an interrupt to the CPU. Table 7.6.4 shows the correspondence between the register and interrupt factor.

| Table 7.6.4 | Interrupt enab | le registers |
|-------------|----------------|--------------|
|-------------|----------------|--------------|

|        | Table 7.6.4 In         | iterrupt enable registers            |
|--------|------------------------|--------------------------------------|
| F      | Register               | Interrupt factor                     |
| EP27   | $(00FF14H \cdot D7)$   | P27 input                            |
| EP26   | $(00FF14H \cdot D6)$   | P26 input                            |
| EP25   | $(00FF14H \cdot D5)$   | P25 input                            |
| EP24   | $(00FF14H \cdot D4)$   | P24 input                            |
| EP23   | $(00FF14H{\cdot}D3)$   | P23 input                            |
| EP22   | $(00 FF14 H{\cdot}D2)$ | P22 input                            |
| EP21   | $(00FF14H \cdot D1)$   | 1                                    |
| EP20   | $(00FF14H \cdot D0)$   | P20 input                            |
| ETC0   |                        | PTM 0 compare match                  |
| ETU0   |                        | PTM 0 underflow                      |
| ETU1   |                        | PTM 1 underflow                      |
| ETC1   |                        | PTM 1 compare match                  |
| ETU2   |                        | PTM 2 underflow                      |
| ETC2   |                        | PTM 2 compare match                  |
| ETU3   | $(00FF15H \cdot D6)$   | PTM 3 underflow                      |
| ETC3   |                        | PTM 3 compare match                  |
| ETU4   | $(00FF18H{\cdot}D0)$   | PTM 4 underflow                      |
| ETC4   | $(00FF18H \cdot D1)$   | PTM 4 compare match                  |
| ETU5   | $(00FF18H \cdot D2)$   | PTM 5 underflow                      |
| ETC5   |                        | PTM 5 compare match                  |
| ETU6   |                        | PTM 6 underflow                      |
| ETC6   | $(00FF18H \cdot D5)$   | PTM 6 compare match                  |
| ETU7   | $(00FF18H \cdot D6)$   | PTM 7 underflow                      |
| ETC7   |                        | PTM 7 compare match                  |
|        |                        | Serial I/F 0 receiving error         |
|        |                        | Serial I/F 0 receiving completion    |
|        |                        | Serial I/F 0 transmitting completion |
|        |                        | Serial I/F 1 receiving error         |
|        |                        | Serial I/F 1 receiving completion    |
| ESTRA1 | $(00FF16H \cdot D3)$   | Serial I/F 1 transmitting completion |
| ETM32  |                        | Clock timer 32 Hz                    |
| ETM8   |                        | Clock timer 8 Hz                     |
| ETM2   | · /                    | Clock timer 2 Hz                     |
| ETM1   | $(00FF17H \cdot D0)$   | Clock timer 1 Hz                     |

When "1" is written: Interrupt enabled When "0" is written: Interrupt disabled Reading: Valid

When the interrupt enable register is set to "1", the corresponding interrupt is enabled. When the interrupt enable register is set to "0", the interrupt is disabled.

At initial reset, the interrupt enable register is set to "0" (interrupt disabled).

### F\*: 00FF1AH-00FF1EH

These are the interrupt factor flags that indicate occurrence of interrupt factors. Table 7.6.5 shows the correspondence between the flag and interrupt factor.

| Table 7.6.5 | Interrupt | factor | flags |
|-------------|-----------|--------|-------|
|-------------|-----------|--------|-------|

|        |                      | Interrupt Jactor Jtags               |
|--------|----------------------|--------------------------------------|
|        | Flag                 | Interrupt factor                     |
| FP27   | $(00FF1AH \cdot D7)$ |                                      |
| FP26   | $(00FF1AH \cdot D6)$ |                                      |
| FP25   | $(00FF1AH \cdot D5)$ | 1                                    |
| FP24   | $(00FF1AH \cdot D4)$ |                                      |
| FP23   | $(00FF1AH \cdot D3)$ |                                      |
| FP22   | $(00FF1AH \cdot D2)$ |                                      |
| FP21   | $(00FF1AH \cdot D1)$ | P21 input                            |
| FP20   | $(00FF1AH \cdot D0)$ | P20 input                            |
| FTC0   |                      | PTM 0 compare match                  |
| FTU0   | $(00FF1BH \cdot D1)$ | PTM 0 underflow                      |
| FTU1   |                      | PTM 1 underflow                      |
| FTC1   | $(00FF1BH \cdot D3)$ | PTM 1 compare match                  |
| FTU2   | $(00FF1BH \cdot D4)$ | PTM 2 underflow                      |
| FTC2   | $(00FF1BH \cdot D5)$ | PTM 2 compare match                  |
| FTU3   |                      | PTM 3 underflow                      |
| FTC3   | $(00FF1BH \cdot D7)$ | PTM 3 compare match                  |
| FTU4   | $(00FF1EH \cdot D0)$ | PTM 4 underflow                      |
| FTC4   | $(00FF1EH \cdot D1)$ | PTM 4 compare match                  |
| FTU5   |                      | PTM 5 underflow                      |
| FTC5   | $(00FF1EH \cdot D3)$ | PTM 5 compare match                  |
| FTU6   | $(00FF1EH \cdot D4)$ | PTM 6 underflow                      |
| FTC6   | $(00FF1EH \cdot D5)$ | PTM 6 compare match                  |
| FTU7   | $(00FF1EH \cdot D6)$ | PTM 7 underflow                      |
| FTC7   | $(00FF1EH \cdot D7)$ | PTM 7 compare match                  |
| FSERR0 | (00FF1CH·D2)         | Serial I/F 0 receiving error         |
| FSREC0 | (00FF1CH·D1)         | Serial I/F 0 receiving completion    |
| FSTRA0 | $(00FF1CH \cdot D0)$ | Serial I/F 0 transmitting completion |
| FSERR1 | (00FF1CH·D5)         | Serial I/F 1 receiving error         |
| FSREC1 | (00FF1CH·D4)         | Serial I/F 1 receiving completion    |
| FSTRA1 | (00FF1CH·D3)         | Serial I/F 1 transmitting completion |
| FTM32  | (00FF1DH·D3)         | Clock timer 32 Hz                    |
| FTM8   | (00FF1DH·D2)         | Clock timer 8 Hz                     |
| FTM2   | (00FF1DH·D1)         | Clock timer 2 Hz                     |
| FTM1   |                      | Clock timer 1 Hz                     |
| ·      | ,                    |                                      |

When "1" is read:OccurredWhen "0" is read:Not occurredWhen "1" is written:Resets factor flagWhen "0" is written:Invalid

The interrupt factor flag is set to "1" when the interrupt generation condition is met. When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt factor. To accept the subsequent interrupt after an interrupt has generated, resetting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag must be reset. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is reset to "0".

Refer to the explanations on the respective peripheral circuits for details of the interrupt factor.

#### 7 INTERRUPT AND STANDBY STATUS

## 7.7 Precautions

- When executing the RETE instruction without resetting the interrupt factor flag after an interrupt has been generated, the same interrupt will be generated. Consequently, the interrupt factor flag corresponding to that routine must be reset (writing "1") in the interrupt processing routine.
- (2) Beware. If the interrupt flags (I0 and I1) have been rewritten (set to lower priority) prior to resetting an interrupt factor flag after an interrupt has been generated, the same interrupt will be generated again.
- (3) An exception processing vector is fixed at 2 bytes, so it cannot specify a branch destination bank address. Consequently, to branch from multiple banks to a common exception processing routine, the front portion of an exception processing routine must be described within the common area (000000H–007FFFH).
- (4) Do not execute the SLP instruction for 2 msec after a  $\overline{\rm NMI}$  interrupt has occurred (when fosc1 is 32.768 kHz).

# 8 OSCILLATION CIRCUITS

## 8.1 Configuration of Oscillation Circuits

The S1C88655 is twin clock system with two internal oscillation circuits (OSC1 and OSC3). The OSC3 oscillation circuit generates the mainclock to run the CPU and some peripheral circuits in high speed, and the OSC1 oscillation circuit generates the sub-clock for low-power operation. Figure 8.1.1 shows the configuration of the oscillation circuit.

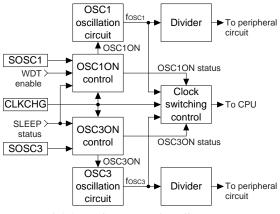



Fig. 8.1.1 Configuration of oscillation circuits

At initial reset, the OSC3 oscillation circuit is selected for the CPU operating clock source. Turning the OSC3 oscillation circuit ON/OFF and switching of the system clock between OSC3 and OSC1 are controlled in software. The OSC3 oscillation circuit is utilized when the CPU and some peripheral circuits must be operated in high speed. Otherwise, OSC1 should be used to generate the operating clock with the OSC3 oscillation circuit stopped in order to reduce current consumption.

# 8.2 Mask Option

- OSC1 oscillation circuit
  - $\Box$  Crystal oscillation circuit
  - $\Box$  CR oscillation circuit
- OSC3 oscillation circuit
  - $\Box$  Crystal oscillation circuit
  - □ Ceramic oscillation circuit
  - $\Box$  CR oscillation circuit

The OSC1 oscillator types can be selected from crystal and CR by mask option. The OSC3 oscillator types can be selected from crystal, ceramic, and CR by mask option.

# 8.3 OSC3 Oscillation Circuit

The OSC3 oscillation circuit generates the system clock to operate the CPU and some peripheral circuits in high speed.

The OSC3 oscillator types can be selected from crystal, ceramic, and CR by mask option. Figure 8.3.1 shows the configuration of the OSC3

oscillation circuit.

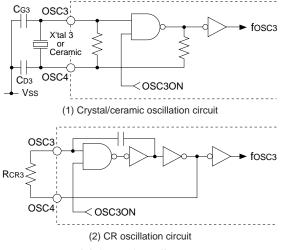



Fig. 8.3.1 OSC3 oscillation circuit

When crystal or ceramic is selected, the crystal or ceramic oscillation circuit are configured by connecting a crystal oscillator (X'tal 3)/ceramic oscillator (Ceramic) between the OSC3 and OSC4 terminals, and connecting two capacitors (CG3, CD3) between the OSC3 terminal and Vss and between the OSC4 terminal and Vss, respectively. When CR is selected, the CR oscillation circuit is configured simply by connecting a resistor (RCR3) between OSC3 and OSC4 terminals.

The OSC3 oscillation circuit can be turned ON or OFF using the OSC3 oscillation ON/OFF control register SOSC3. When the system does not need to run at high speed, current consumption can be reduced by turning the OSC3 oscillation OFF after switching the CPU clock to OSC1. While the OSC3 clock is used as the system clock, the OSC3 oscillation circuit cannot be stopped.

Also the OSC3 oscillation circuit stops when the SLP instruction is executed.

# 8.4 OSC1 Oscillation Circuit

The OSC1 oscillation circuit generates the system clock which is utilized during low speed operation (low power mode) of the CPU and peripheral circuits. Furthermore, even when OSC3 is utilized as the system clock, OSC1 continues to generate the source clock for the clock timer and watchdog timer.

The OSC1 oscillator types can be selected from crystal and CR by mask option.

Figure 8.4.1 shows the configuration of the OSC1 oscillation circuit.

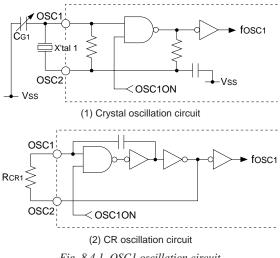



Fig. 8.4.1 OSC1 oscillation circuit

When crystal is selected, a crystal oscillation circuit can be easily configured by connecting a crystal oscillator (X'tal 1) between the OSC1 and OSC2 terminals along with a trimmer capacitor (CG1) between the OSC1 terminal and Vss. When CR is selected, the CR oscillation circuit is configured simply by connecting a resistor (RCR1) between OSC1 and OSC2 terminals.

The OSC1 oscillation circuit can be turned ON or OFF using the OSC1 oscillation ON/OFF control register SOSC1. If the system does not need the OSC1 clock when it is running with OSC3 clock, current consumption can be reduced by turning the OSC1 oscillation OFF. When the watchdog timer that uses the OSC1 clock is enabled, the OSC1 oscillation circuit cannot be stopped. Also the OSC1 oscillation circuit stops when the SLP instruction is executed.

## 8.5 Switching the CPU Clock

Either OSC1 or OSC3 can be selected as the system clock for running the CPU with software. The system can save power by turning the OSC3 oscillation circuit OFF while the CPU is running with the OSC1 clock. When the system needs high speed operation, turn the OSC3 oscillation circuit ON and switch the system clock from OSC1 to OSC3. In this case, since several msec to several tens of msec are necessary for the oscillation to stabilize after turning the OSC3 oscillation circuit ON, you should switch over the clock after stabilization time has elapsed.

When switching over from the OSC3 to the OSC1, turn the OSC3 oscillation circuit OFF immediately following the clock changeover.

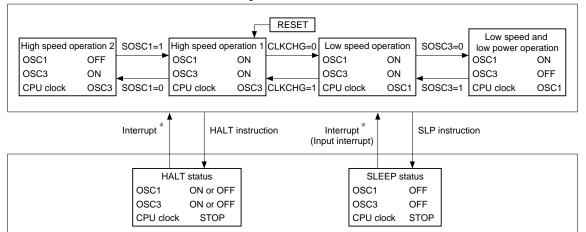

When switching the system clock from OSC3 to OSC1 immediately after the power is turned ON, it is necessary to wait for the OSC1 oscillation to stabilize before the clock can be switched. The OSC3 oscillation may take several tens of msec to several seconds until it has completely stabilized. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 19, "Electrical Characteristics".)

Figure 8.5.1 indicates the status transition diagram for the clock changeover.

Note: Be sure to wait long enough that the OSC1 oscillation has stabilized completely before switching the operating clock to OSC1 or starting the timer that uses the OSC1 clock after the OSC1 oscillation circuit is turned ON.

The CPU may start operating before the OSC1 oscillation has stabilized when both the OSC1 and OSC3 oscillation circuits are turned ON since the OSC3 oscillation circuit is able to stabilize in a shorter time than the OSC1 oscillation circuit.

Program Execution Status



Standby Status

\* The return destination from the standby status becomes the program execution status prior to shifting to the standby status. *Fig. 8.5.1 Status transition diagram for the clock changeover* 

# 8.6 Clock Output (FOUT)

In order for the S1C88655 to provide a clock to an external device, a FOUT signal (oscillation clock fOSC1 or fOSC3 dividing clock) can be output from the P22 port terminal.

The FOUT signal output is controlled by the register FOUTON. When FOUTON is set to "1", the FOUT signal is output from the P22 port terminal, when "0" is set, the port is set to the status according to the P22 port registers. While the FOUT signal is output (FOUTON is "1"), settings of the I/O control register IOC22 and data register P22D become invalid.

The frequency of the FOUT signal can be selected from among eight settings as shown in Table 8.6.1 using the registers FOUT0–FOUT2.

| 5 1 5 6 |       |       |                |  |  |  |  |  |  |
|---------|-------|-------|----------------|--|--|--|--|--|--|
| FOUT2   | FOUT1 | FOUT0 | FOUT frequency |  |  |  |  |  |  |
| 1       | 1     | 1     | fosc3 / 8      |  |  |  |  |  |  |
| 1       | 1     | 0     | fosc3 / 4      |  |  |  |  |  |  |
| 1       | 0     | 1     | fosc3 / 2      |  |  |  |  |  |  |
| 1       | 0     | 0     | fosc3 / 1      |  |  |  |  |  |  |
| 0       | 1     | 1     | fosc1 / 8      |  |  |  |  |  |  |
| 0       | 1     | 0     | fosc1 / 4      |  |  |  |  |  |  |
| 0       | 0     | 1     | fosc1 / 2      |  |  |  |  |  |  |
| 0       | 0     | 0     | fosci / 1      |  |  |  |  |  |  |

fOSC1: OSC1 oscillation frequency fOSC3: OSC3 oscillation frequency

When the selected clock source is not activated, the oscillation circuit must be turned ON before starting the FOUT output. An oscillation stabilization waiting time is required after the OSC3 or OSC1 oscillation circuit is turned ON. Consequently, if an abnormality occurs as the result of an unstable FOUT signal being output externally, you should allow an adequate waiting time after turning ON of the oscillation, before outputting FOUT. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 19, "Electrical Characteristics".)

Since the FOUT signal is generated asynchronously from the register FOUTON, when the signal is turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated.

Figure 8.6.1 shows the output waveform of the FOUT signal.



Fig. 8.6.1 Output waveform of FOUT signal

See Chapter 10, "I/O Ports (P Ports)", for the P22 port registers.

## 8.7 Details of Control Registers

| Address | Bit      | Name   |            |            | unction   | Oscillation d          |    | 1     | 0            | SR | R/W    | Comment             |
|---------|----------|--------|------------|------------|-----------|------------------------|----|-------|--------------|----|--------|---------------------|
| 00FF02  | D7       | EBR    | Bus releas | e enable   | register  | Р                      | 24 | BREQ  | _            | 0  | R/W    |                     |
|         |          |        |            |            | U         | fication) P            | 25 | BACK  | _            |    |        |                     |
|         | D6       | WT2    | Wait cont  |            |           | Numbe                  |    |       |              | 0  | R/W    |                     |
|         |          |        | WT2        | WT1        | WT        |                        |    |       |              |    |        |                     |
|         |          |        | 1          | 1          | 1         | 14                     |    |       |              |    |        |                     |
|         | D5       | WT1    | 1          | 1          | 0         | 12                     |    |       |              |    | R/W    |                     |
|         | 00       | ***    | 1          | 0          | 1         | 10                     |    |       |              |    | 10, 11 |                     |
|         |          |        | 1          | 0          | 0         | 8                      |    |       |              |    |        |                     |
|         |          |        | 0          | 1          | 1         | 6                      |    |       |              |    |        |                     |
|         | D4       | WT0    | 0<br>0     | 1          | 0         | 4                      |    |       |              | 0  | R/W    |                     |
|         |          |        | 0          | 0<br>0     | 1<br>0    | 2                      |    |       |              |    |        |                     |
|         |          |        | 0          | 0          | 0         | No wai                 | it |       |              |    |        |                     |
|         | D3       |        | -          |            |           |                        |    | -     | -            | -  | -      | "0" when being read |
|         | D2       | CLKCHG | CPU oper   | ating cloc | k switch  |                        |    | OSC3  | OSC1         | 1  | R/W    | *1                  |
|         | D1       | SOSC3  | OSC3 osc   | illation O | n/Off con | ntrol                  |    | On    | Off          | 1  | R/W    | *2                  |
|         | D0       | SOSC1  | OSC1 osc   | illation O | n/Off coi | ntrol                  |    | On    | Off          | 1  | R/W    | *3                  |
| 00FF04  | D7       | FOUTON | FOUT out   | tput contr | ol        |                        |    | On    | Off          | 0  | R/W    |                     |
|         | D6       | FOUT2  | FOUT fre   | quency se  | election  |                        |    |       |              | 0  | R/W    |                     |
|         |          |        | FOUT2      | FOUT1 I    | FOUT0     | Frequency              |    |       |              |    |        |                     |
|         |          |        | 1          | 1          | 1         | fosc3 / 8              | -  |       |              |    |        |                     |
|         | D5       | FOUT1  | 1          | 1          | 0         | fosc3 / 4              |    |       |              | 0  | R/W    |                     |
|         | -        |        | 1          | 0          | 1         | fosc3 / 2              |    |       |              | -  |        |                     |
|         |          |        | 1          | 0          | 0         | fosc3 / 1              |    |       |              |    |        |                     |
|         |          | FOUT0  | 0<br>0     | 1<br>1     | 1<br>0    | fosc1 / 8<br>fosc1 / 4 |    |       |              |    | R/W    |                     |
|         | 04       | 10010  | 0          | 0          | 1         | fosc1/4                |    |       |              | 0  | IX/ W  |                     |
|         |          |        | 0          | 0          | 0         | fosci / 2              |    |       |              |    |        |                     |
|         | D3       |        |            |            |           |                        |    |       |              | _  | _      | Constantly "0" when |
|         | D3<br>D2 | _      |            |            |           |                        |    | -     | -            |    |        | 1 -                 |
|         |          | -      | -          |            |           |                        |    | -     | -            | -  | -      | being read          |
|         | D1       |        | -          |            |           |                        |    | -     | -            | -  | -      |                     |
|         | 00       | WDRST  | Watchdog   | timer res  | et        |                        |    | Reset | No operation | -  | W      |                     |

Table 8.7.1 shows the control bits for the oscillation circuits.

 Table 8.7.1 Oscillation circuit control bits
 Image: Control bits

\*1 CLKCHG cannot be set to "0" when SOSC1 = "0" (OSC1 oscillation is OFF) and cannot be set to "1" when SOSC3 = "0" (OSC3 oscillation is OFF).

\*2 Cannot be turned OFF when the CPU is running with the OSC3 clock.

\*3 Cannot be turned OFF when the CPU is running with the OSC1 clock or the watchdog timer is enabled.

#### SOSC1: 00FF02H•D0

Turns the OSC1 oscillation circuit ON or OFF.

When "1" is written:OSC1 oscillation ONWhen "0" is written:OSC1 oscillation OFFReading:Valid

If the system does not need the OSC1 clock when it is running with OSC3 clock, set SOSC1 to "0" to reduce current consumption. When the system is running with the OSC1 clock or the watchdog timer that uses the OSC1 clock is enabled, the OSC1 oscillation circuit cannot be stopped. Also the OSC1 oscillation circuit stops when the SLP instruction is executed.

At initial reset, SOSC1 is set to "1" (OSC1 oscillation ON).

#### SOSC3: 00FF02H•D1

Turns the OSC3 oscillation circuit ON or OFF.

When "1" is written:OSC3 oscillation ONWhen "0" is written:OSC3 oscillation OFFReading:Valid

When the CPU and some peripheral circuits are to be operated at high speed, set SOSC3 to "1". Otherwise, it should be set to "0" in order to reduce current consumption. When the system is running with the OSC3 clock, the OSC3 oscillation circuit cannot be stopped. Also the OSC3 oscillation circuit stops when the SLP instruction is executed. At initial reset, SOSC3 is set to "1" (OSC3 oscillation ON).

## CLKCHG: 00FF02H•D2

Selects the operating clock for the CPU.

| When "1" is written: | OSC3 clock |
|----------------------|------------|
| When "0" is written: | OSC1 clock |
| Reading:             | Valid      |

The CPU runs with the OSC3 clock when CLKCHG is set to "1" or with the OSC1 clock when it is set to "0". However, CLKCHG cannot be set to "0" when SOSC1 = "0" (OSC1 oscillation is OFF) and cannot be set to "1" when SOSC3 = "0" (OSC3 oscillation is OFF).

At initial reset, CLKCHG is set to "1" (OSC3 clock).

#### FOUTON: 00FF04H•D7

Controls the FOUT (fosc1/fosc3 dividing clock) signal output.

When "1" is written:FOUT signal outputWhen "0" is written:P22 portReading:Valid

FOUTON is the output control register for FOUT signal. When "1" is set, the FOUT signal is output from the P22 port terminal and when "0" is set, the port is set to the status according to the P22 port registers. While the FOUT signal is output (FOUTON is "1"), settings of the I/O control register IOC22 and data register P22D become invalid.

At initial reset, FOUTON is set to "0" (P22 port).

#### FOUT0-FOUT2: 00FF04H•D4-D6

FOUT signal frequency is set as shown in Table 8.7.2.

| FOUT2 | FOUT1 | FOUT0 | FOUT frequency |  |  |  |  |  |  |  |
|-------|-------|-------|----------------|--|--|--|--|--|--|--|
| 1     | 1     | 1     | fosc3 / 8      |  |  |  |  |  |  |  |
| 1     | 1     | 0     | fosc3 / 4      |  |  |  |  |  |  |  |
| 1     | 0     | 1     | fosc3 / 2      |  |  |  |  |  |  |  |
| 1     | 0     | 0     | fosc3 / 1      |  |  |  |  |  |  |  |
| 0     | 1     | 1     | fosc1 / 8      |  |  |  |  |  |  |  |
| 0     | 1     | 0     | fosc1 / 4      |  |  |  |  |  |  |  |
| 0     | 0     | 1     | fosc1 / 2      |  |  |  |  |  |  |  |
| 0     | 0     | 0     | fosc1 / 1      |  |  |  |  |  |  |  |

 Table 8.7.2
 FOUT frequency settings

fosc1: OSC1 oscillation frequency fosc3: OSC3 oscillation frequency

At initial reset, this register is set to "0" (fosc1/1).

## 8.8 Precautions

- When the high speed CPU operation is not necessary, you should operate the peripheral circuits according to the setting outline indicate below.
  - CPU operating clock
     OSC1
  - OSC3 oscillation circuit OFF (When the OSC3 clock is not necessary for some peripheral circuits.)
- (2) An oscillation stabilization time is required when the oscillation circuit starts oscillating. Therefore, be sure to wait long enough before switching the CPU clock or outputting the FOUT clock after the oscillation circuit is turned ON. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 19, "Electrical Characteristics".)
- (3) When switching the clock from OSC3 to OSC1, be sure to turn OSC3 oscillation OFF with separate instructions. The same applies when switching the clock from OSC1 to OSC3 and turning OSC1 OFF. Using a single instruction to process simultaneously may cause a malfunction of the CPU.
- (4) Since the FOUT output signal is generated asynchronously from the output control register (FOUTON), when the signals is turned ON or OFF by the output control register settings, a hazard of a 1/2 cycle or less is generated.
- (5) If the SLP instruction is executed when the FOUT signal is being output, an unstable clock will be output when the system wakes up from SLEEP status. Therefore, stop the FOUT output before executing the SLP instruction.

# 9 OUTPUT PORTS (R PORTS)

# 9.1 Configuration of Output Ports

The S1C88655 is equipped with 26 bits of output ports (R00–R07, R10–R17, R20–R25, R30–R33). Depending on the bus mode setting, the configuration of the output ports may vary as shown in the table below.

| Table 9.1.1 Configuration of output ports |                 |                            |  |  |  |  |  |
|-------------------------------------------|-----------------|----------------------------|--|--|--|--|--|
| Terminal                                  | Bus mode        |                            |  |  |  |  |  |
| Terminal                                  | Single chip     | Expansion                  |  |  |  |  |  |
| R00                                       | Output port R00 | Address A0                 |  |  |  |  |  |
| R01                                       | Output port R01 | Address A1                 |  |  |  |  |  |
| R02                                       | Output port R02 | Address A2                 |  |  |  |  |  |
| R03                                       | Output port R03 | Address A3                 |  |  |  |  |  |
| R04                                       | Output port R04 | Address A4                 |  |  |  |  |  |
| R05                                       | Output port R05 | Address A5                 |  |  |  |  |  |
| R06                                       | Output port R06 | Address A6                 |  |  |  |  |  |
| R07                                       | Output port R07 | Address A7                 |  |  |  |  |  |
| R10                                       | Output port R10 | Address A8                 |  |  |  |  |  |
| R11                                       | Output port R11 | Address A9                 |  |  |  |  |  |
| R12                                       | Output port R12 | Address A10                |  |  |  |  |  |
| R13                                       | Output port R13 | Address A11                |  |  |  |  |  |
| R14                                       | Output port R14 | Address A12                |  |  |  |  |  |
| R15                                       | Output port R15 | Address A13                |  |  |  |  |  |
| R16                                       | Output port R16 | Address A14                |  |  |  |  |  |
| R17                                       | Output port R17 | Address A15                |  |  |  |  |  |
| R20                                       | Output port R20 | Address A16                |  |  |  |  |  |
| R21                                       | Output port R21 | Address A17                |  |  |  |  |  |
| R22                                       | Output port R22 | Address A18                |  |  |  |  |  |
| R23                                       | Output port R23 | Address A19                |  |  |  |  |  |
| R24                                       | Output port R24 | RD signal                  |  |  |  |  |  |
| R25                                       | Output port R25 | WR signal                  |  |  |  |  |  |
| R30                                       | Output port R30 | Output port R30/CE0 signal |  |  |  |  |  |
| R31                                       | Output port R31 | Output port R31/CE1 signal |  |  |  |  |  |
| R32                                       | Output port R32 | Output port R32/CE2 signal |  |  |  |  |  |
| R33                                       | Output port R33 | Output port R33/CE3 signal |  |  |  |  |  |

Only the configuration of the output ports in single chip mode will be discussed here. With respect to bus control, see Chapter 6, "System Controller and Bus Control". Figure 9.1.1 shows the basic structure of the output ports.

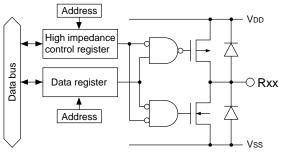



Fig. 9.1.1 Structure of output ports

In expansion mode, the data registers and high impedance control registers of the output ports used for bus function can be used as generalpurpose registers with read/write capabilities. This will not in any way affect bus signal output. The output specification of each output port is as complementary output with high impedance control in software possible.

# 9.2 High Impedance Control

The output port can be set into high impedance with software.

This makes it possible to share output signal lines with an other external device.

A high impedance control register HZRxx is provided to control each port status. When a high impedance control register HZRxx is set to "1", the corresponding output port terminal becomes high impedance state and when set to "0", it becomes complementary output.

# 9.3 DC Output

As Figure 9.1.1 shows, when "1" is written to the output port data register, the output terminal goes HIGH (VDD) and when "0" is written it goes LOW (VSS). When the port is in high impedance state, the data written to the data register is output from the terminal at the instant when output is switched to complementary.

# 9.4 Details of Control Registers

Table 9.4.1 shows the output port control bits.

Table 9.4.1(a) Output port control bits

| Address | Bit | Name  | Function                   | 1         | 0       | SR | R/W   | Comment             |
|---------|-----|-------|----------------------------|-----------|---------|----|-------|---------------------|
| 00FF70  |     | HZR07 | R07 high impedance control |           |         |    |       |                     |
| 001110  |     | HZR06 | R06 high impedance control |           |         |    |       |                     |
|         |     | HZR05 | R05 high impedance control |           |         |    |       |                     |
|         |     | HZR04 | R04 high impedance control | High      | Comple- |    |       |                     |
|         |     | HZR03 | R03 high impedance control | impedance | mentary | 0  | R/W   |                     |
|         |     | HZR02 | R02 high impedance control | Impedance | mentary |    |       |                     |
|         |     | HZR01 | R01 high impedance control |           |         |    |       |                     |
|         |     | HZR00 | R00 high impedance control |           |         |    |       |                     |
| 00FF71  |     | HZR17 | R17 high impedance control |           |         |    |       |                     |
| 001171  |     | HZR16 | R16 high impedance control |           |         |    |       |                     |
|         |     | HZR15 | R15 high impedance control |           |         |    |       |                     |
|         |     | HZR14 | R14 high impedance control | High      | Comula  |    |       |                     |
|         |     | HZR13 | R13 high impedance control | High      | Comple- | 0  | R/W   |                     |
|         |     |       |                            | impedance | mentary |    |       |                     |
|         |     | HZR12 | R12 high impedance control |           |         |    |       |                     |
|         |     | HZR11 | R11 high impedance control |           |         |    |       |                     |
| 005570  |     | HZR10 | R10 high impedance control |           |         |    |       | ~                   |
| 00FF72  | D7  | -     | -                          | -         | -       | 0  | R     | Constantly "0" when |
|         | D6  | -     |                            | -         | -       | 0  | R     | being read          |
|         |     | HZR25 | R25 high impedance control |           |         |    |       |                     |
|         |     | HZR24 | R24 high impedance control |           |         |    |       |                     |
|         |     | HZR23 | R23 high impedance control | High      | Comple- | 0  | R/W   |                     |
|         |     | HZR22 | R22 high impedance control | impedance | mentary |    |       |                     |
|         |     | HZR21 | R21 high impedance control |           |         |    |       |                     |
|         |     | HZR20 | R20 high impedance control |           |         |    |       |                     |
| 00FF73  | D7  | -     | _                          | -         | -       | 0  | R     | Constantly "0" when |
|         | D6  | -     | _                          | -         | -       | 0  | R     | being read          |
|         | D5  | -     | _                          | -         | -       | 0  | R     |                     |
|         | D4  | -     | _                          | -         | -       | 0  | R     |                     |
|         |     | HZR33 | R33 high impedance control |           |         |    |       |                     |
|         |     | HZR32 | R32 high impedance control | High      | Comple- | 0  | R/W   |                     |
|         |     | HZR31 | R31 high impedance control | impedance | mentary |    |       |                     |
|         | _   | HZR30 | R30 high impedance control |           |         |    |       |                     |
| 00FF74  |     | R07D  | R07 output port data       |           |         |    |       |                     |
|         |     | R06D  | R06 output port data       |           |         |    |       |                     |
|         |     | R05D  | R05 output port data       |           |         |    |       |                     |
|         |     | R04D  | R04 output port data       | High      | Low     | 1  | R/W   |                     |
|         |     | R03D  | R03 output port data       | ingn      | Low     |    | 10 11 |                     |
|         |     | R02D  | R02 output port data       |           |         |    |       |                     |
|         |     | R01D  | R01 output port data       |           |         |    |       |                     |
|         | D0  | R00D  | R00 output port data       |           |         |    |       |                     |
| 00FF75  | D7  | R17D  | R17 output port data       |           |         |    |       |                     |
|         | D6  | R16D  | R16 output port data       |           |         |    |       |                     |
|         | D5  | R15D  | R15 output port data       |           |         |    |       |                     |
|         | D4  | R14D  | R14 output port data       |           | T.      | 1  | D/117 |                     |
|         | D3  | R13D  | R13 output port data       | High      | Low     | 1  | R/W   |                     |
|         | 20  | R12D  | R12 output port data       |           |         |    |       |                     |
|         | 02  |       |                            |           |         |    |       |                     |
|         |     | R11D  | R11 output port data       |           |         |    |       |                     |

| Address | Bit | Name | Function             | 1     | 0   | SR | R/W | Comment           |
|---------|-----|------|----------------------|-------|-----|----|-----|-------------------|
| 00FF76  | D7  | -    | R/W register         | 1     | 0   | 1  | R/W | Reserved register |
|         | D6  | -    | R/W register         | 1     | 0   | 1  | R/W |                   |
|         | D5  | R25D | R25 output port data |       |     |    |     |                   |
|         | D4  | R24D | R24 output port data |       |     |    |     |                   |
|         | D3  | R23D | R23 output port data | II:-1 | T   | 1  | R/W |                   |
|         | D2  | R22D | R22 output port data | High  | Low | 1  | K/W |                   |
|         | D1  | R21D | R21 output port data |       |     |    |     |                   |
|         | D0  | R20D | R20 output port data |       |     |    |     |                   |
| 00FF77  | D7  | -    | R/W register         | 1     | 0   | 1  | R/W | Reserved register |
|         | D6  | -    | R/W register         | 1     | 0   | 1  | R/W |                   |
|         | D5  | -    | R/W register         | 1     | 0   | 1  | R/W |                   |
|         | D4  | -    | R/W register         | 1     | 0   | 1  | R/W |                   |
|         | D3  | R33D | R33 output port data |       |     |    |     |                   |
|         | D2  | R32D | R32 output port data | II:-1 | T   | 1  | DAV |                   |
|         | D1  | R31D | R31 output port data | High  | Low | 1  | R/W |                   |
|         | D0  | R30D | R30 output port data |       |     |    |     |                   |

 Table 9.4.1(b)
 Output port control bits

#### HZR00-HZR07: 00FF70H HZR10-HZR17: 00FF71H HZR20-HZR25: 00FF72H•D0-D5 HZR30-HZR33: 00FF73H•D0-D3

Sets the output terminals to a high impedance state.

When "1" is written: High impedance When "0" is written: Complementary Reading: Valid

HZRxx is the high impedance control register that corresponds to each output port terminal. When "1" is set to the HZRxx register, the corresponding output port terminal becomes high impedance state and when "0" is set, it becomes complementary output.

At initial reset, this register is set to "0" (complementary).

The high impedance control registers set for bus signal output can be used as general-purpose registers with read/write capabilities which do not affect the output terminals.

### R00D-R07D: 00FF74H R10D-R17D: 00FF75H R20D-R25D: 00FF76H•D0-D5 R30D-R33D: 00FF77H•D0-D3

Sets the data output from the output port terminal Rxx.

| When "1" is written: | HIGH level output |
|----------------------|-------------------|
| When "0" is written: | LOW level output  |
| Reading:             | Valid             |

RxxD is the data register for each output port. When "1" is set, the corresponding output port terminal goes HIGH (VDD), and when "0" is set, it goes LOW (Vss).

At initial reset, this register is set to "1" (HIGH level output).

The output data registers set for bus signal output can be used as general-purpose registers with read/write capabilities which do not affect the output terminals.

# 10 I/O PORTS (P PORTS)

# 10.1 Configuration of I/O Ports

The S1C88655 is equipped with 24 bits of I/O ports (P00–P07, P10–P17, P20–P27).

Figure 10.1.1 shows the structure of an I/O port.

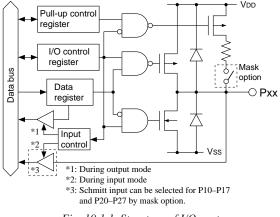



Fig. 10.1.1 Structure of I/O port

An I/O control register is provided for each I/O port to set the port into input or output mode.

The I/O port terminals are shared with other functions shown below and are software configurable.

| Table 10.1.1 | Terminal shared function |
|--------------|--------------------------|
|--------------|--------------------------|

| Port | Shared functions                                       |        |
|------|--------------------------------------------------------|--------|
| P00  | Data bus (D0)                                          | I/O    |
| P01  | Data bus (D1)                                          | I/O    |
| P02  | Data bus (D2)                                          | I/O    |
| P03  | Data bus (D3)                                          | I/O    |
| P04  | Data bus (D4)                                          | I/O    |
| P05  | Data bus (D5)                                          | I/O    |
| P06  | Data bus (D6)                                          | I/O    |
| P07  | Data bus (D7)                                          | I/O    |
| P10  | Serial I/F 0 data input (SIN0)                         | Ι      |
| P11  | Serial I/F 0 data output (SOUT0)                       | 0      |
| P12  | Serial I/F 0 clock input/output (SCLK0)                | I or O |
| P13  | Serial I/F 0 ready signal output (SRDY0)               | 0      |
| P14  | Serial I/F 1 data input (SIN1)                         | Ι      |
| P15  | Serial I/F 1 data output (SOUT1)                       | 0      |
| P16  | Serial I/F 1 clock input/output (SCLK1)                | I or O |
| P17  | Serial I/F 1 ready signal output (SRDY1)               | 0      |
| P20  | PTM 0/1 output (TOUT0/TOUT1)                           | 0      |
| P21  | PTM 2/3 output (TOUT2/TOUT3)                           | 0      |
| P22  | Clock output (FOUT)                                    | 0      |
| P23  | PTM 2/3 inverted output (TOUT2/TOUT3)                  | 0      |
| P24  | 1) Bus release request signal input (BREQ)             | Ι      |
|      | 2) PTM 0 external clock input (EXCL0)                  | Ι      |
| P25  | 1) Bus release ACK signal output ( $\overline{BACK}$ ) | 0      |
|      | 2) PTM 1 external clock input (EXCL1)                  | Ι      |
| P26  | 1) LCD clock output (CL)                               | 0      |
|      | 2) PTM 2 external clock input (EXCL2)                  | Ι      |
| P27  | 1) LCD frame signal output (FR)                        | 0      |
|      | 2) PTM 3 external clock input (EXCL3)                  | Ι      |
|      |                                                        |        |

## P00-P07: D0-D7

The P00–P07 terminals are shared with the data bus D0–D7. When the bus mode is set to expansion mode, they function as the data bus terminals and cannot be used for generalpurpose inputs/outputs. In single chip mode, they can be used as the P00–P07 I/O ports. See Chapter 6, "System Controller and Bus Control", for the bus mode and the data bus. When these terminals are used as the data bus, the data registers and I/O control registers of the I/O ports can be used as general-purpose registers that do not affect the terminal status. The pull-up control registers are effective for the data bus.

## P10–P13: SIN0, SOUT0, <u>SCLK0</u>, <u>SRDY0</u> P14–P17: SIN1, SOUT1, <u>SCLK1</u>, <u>SRDY1</u>

The P10–P13 and P14–P17 terminals are shared with the inputs/outputs of the serial interface. Some terminals may be used as the I/O ports depending on the transfer mode to be set even if the serial interface is used. See Chapter 11, "Serial Interface", for details.

The data registers and I/O control registers of the ports used for serial input/output can be used as general-purpose registers that do not affect the terminal status. The pull-up control registers are effective for the input terminals.

#### P20: TOUT0/TOUT1 P21: TOUT2/TOUT3 P23: TOUT2/TOUT3

The P20, P21, and P23 terminals are shared with the programmable timer (PWM) outputs. See Section 13.6, "Setting TOUT Outputs", for details.

When using the terminal for a timer output, set the port to output mode and set the output level when the timer output is disabled to the data register.

The data register, I/O control register, and pullup control register of the port while the timer output is enabled do not affect the terminal status.

## P22: FOUT

The P22 terminal is shared with the clock output. See Section 8.6, "Clock Output (FOUT)", for the clock output function.

When using the terminal for the clock output, set the P22 port to output mode and set the output level when the clock output is disabled to the data register.

The data register, I/O control register, and pullup control register of the port while the clock output is enabled do not affect the terminal status.

#### P24, P25: BREQ, BACK

The P24 and P25 terminals are shared with the BREQ signal input and BACK signal output, respectively. See Section 6.5, "Setting Bus Authority Release Request Signal", for the BREQ and BACK signals.

The data registers and I/O control registers of the ports can be used as general-purpose registers that do not affect the terminal status. The P24 pull-up control register is effective when used for the  $\overline{BREQ}$  signal input.

#### P26, P27: CL, FR

The P26 and P27 terminals are shared with the CL and FR signal outputs, respectively. See Chapter 15, "LCD Driver", for the CL and FR signals.

When using the terminals for CL/FR outputs, set the ports to output mode and set the output level when the CL/FR outputs are disabled to the data registers.

The data register, I/O control register, and pullup control register of the ports while the CL/FR outputs are enabled do not affect the terminal status.

#### P24-P27: EXCL0-EXCL3

The P24–P27 terminals can also be used for external clock inputs for the programmable timers. See Chapter 13, "Programmable Timer", for the EXCL input.

When using the terminal for EXCL input, set the port to input mode. In this case, the terminal (P24–P27) functions as an I/O port. Therefore, the pull-up control register is effective.

This chapter explains the functions when the terminals are used as general-purpose I/O ports.

## 10.2 Mask Option

| I/O port pull-up resistors<br>P00 With resistor<br>P01 With resistor<br>P02 With resistor<br>P03 With resistor<br>P04 With resistor<br>P05 With resistor<br>P06 With resistor<br>P07 With resistor                              | <ul> <li>Gate direct</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P10 With resistor<br>P11 With resistor<br>P12 With resistor<br>P13 With resistor<br>P14 With resistor<br>P15 With resistor<br>P16 With resistor<br>P17 With resistor                                                            | <ul> <li>Gate direct</li> </ul> |
| P20□With resistorP21□With resistorP22□With resistorP23□With resistorP24□With resistorP25□With resistorP26□With resistorP27□With resistor                                                                                        | <ul> <li>Gate direct</li> </ul> |
| I/O port input interface level<br>P10 CMOS level<br>P11 CMOS level<br>P12 CMOS level<br>P13 CMOS level<br>P14 CMOS level<br>P15 CMOS level<br>P16 CMOS level<br>P17 CMOS level                                                  | CMOS Schmitt                                                                               |
| P20       CMOS level         P21       CMOS level         P22       CMOS level         P23       CMOS level         P24       CMOS level         P25       CMOS level         P26       CMOS level         P27       CMOS level | <ul> <li>CMOS Schmitt</li> </ul>             |

I/O ports P00–P07, P10–P17, and P20–P27 are equipped with a pull-up resistor which goes ON in the input mode. Whether this resistor is used or not can be selected for each port (one bit unit). Furthermore, the interface level for each port in P10–P17 and P20–P27 can be selected from CMOS level and CMOS Schmitt level.

## 10.3 Input/Output Mode

The I/O port Pxx is set either to input or output modes by writing data to the I/O control register IOCxx which corresponds to each bit.

To set an I/O port to input mode, write "0" to the I/O control register.

The I/O port , which is set to input mode, will go to a high impedance state and functions as an input port.

Readout in input mode consists simply of a direct readout of the input terminal state: the data being "1" when the input terminal is at HIGH (VDD) level and "0" when it is at LOW (Vss) level.

When the built-in pull-up resistor is enabled with the software, the port terminal will be pulled-up to high during input mode.

Even in input mode, data can be written to the data registers without affecting the terminal state.

To set an I/O port to output mode, write "1" to the I/O control register. The I/O port, which is set to output mode, functions as an output port.

When port output data is "1", a HIGH (VDD) level is output and when it is "0", a LOW (VSS) level is output. Readout in output mode consists of the contents of the data register.

At initial reset, I/O control registers are set to "0" (I/O ports are set to input mode).

## 10.4 Pull-up Control

When "With resistor" is selected by mask option, the software can enable and disable the pull-up resistor for each port (1-bit units). The pull-up resistor becomes effective by writing "1" to the pull-up control register PULPxx that corresponds to each port, and the Pxx terminal is pulled up during the input mode. When "0" has been written, no pull-up is done. When "Gate direct" is selected by mask option, the corresponding pull-up control register is disconnected from the input line, so it can be used as a general-purpose register. When the port is set

in the output mode, the setting of the pull-up control register becomes invalid (no pull-up is done during output).

At initial reset, the pull-up control registers are set to "1" (pulled up).

When changing the port terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an I/O port. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

For unused ports, select "With resistor" and enable pull-up using the pull-up control registers.

## **10.5 Interrupt Function**

The P20–P27 ports provide the input interrupt function. The condition for issuing an interrupt can be set for each terminal in software. When the interrupt generation condition set for a terminal is met, the interrupt factor flag FP20–FP27 corresponding to the terminal is set at "1" and an interrupt is generated.

Interrupt can be prohibited by setting the interrupt enable registers EP20–EP27 for the corresponding interrupt factor flags.

Furthermore, the priority level for input interrupt can be set at the desired level (0–3) using the interrupt priority registers PP20–PP21.

For details on the interrupt control registers for the above and on operations subsequent to interrupt generation, see Chapter 7, "Interrupt and Standby Status". The exception processing vectors for each interrupt factor are set as follows:

P27 input interrupt: 000006H P26 input interrupt: 000008H P25 input interrupt: 00000AH P24 input interrupt: 00000CH P23 input interrupt: 00000EH P22 input interrupt: 000010H P21 input interrupt: 000012H P20 input interrupt: 000014H

Figure 10.5.1 shows the configuration of the input interrupt circuit.

Note: When a port is placed in output mode or configured for the shared port function other than general-purpose DC input, disable interrupts from the port.

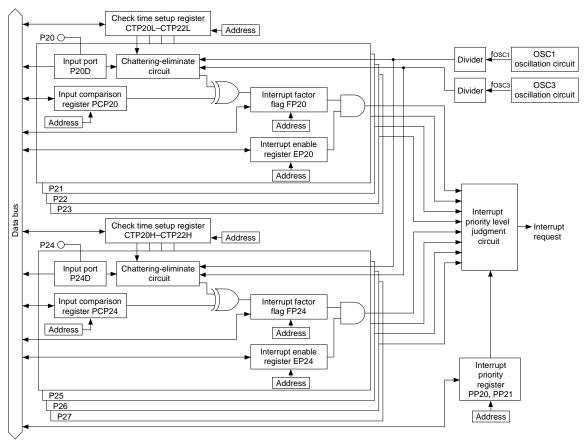



Fig. 10.5.1 Configuration of input interrupt circuit

The input comparison register PCP selects whether the interrupt for each input port will be generated on the rising edge or the falling edge of input. When the P2x input signal changes to the status set by the input comparison register PCP2x, the interrupt factor flag FP2x is set to "1" and an interrupt occurs.

The input port has a chattering-eliminate circuit that checks input level to avoid unnecessary interrupt generation due to chattering. There are two separate chattering-eliminate circuits for P20–P23 and P24–P27 and they can be set up individually. The CTP20x–CTP22x registers allow selection of signal level check time as shown in Table 10.5.1.

| Table 10.5.1 | Setting | the input | level | check time |
|--------------|---------|-----------|-------|------------|
|--------------|---------|-----------|-------|------------|

| CTP22x | CTP21x | CTP20x | Check time | (*)      |
|--------|--------|--------|------------|----------|
| 1      | 1      | 1      | 4/fosc3    | (2 µs)   |
| 1      | 1      | 0      | 2/fosc3    | (1 µs)   |
| 1      | 0      | 1      | 1/fosc3    | (0.5 µs) |
| 1      | 0      | 0      | 4096/fosc1 | (128 ms) |
| 0      | 1      | 1      | 2048/fosc1 | (64 ms)  |
| 0      | 1      | 0      | 512/fosci  | (16 ms)  |
| 0      | 0      | 1      | 128/fosc1  | (4 ms)   |
| 0      | 0      | 0      | None       | -        |
|        |        |        |            |          |

\*: When OSC1 = 32 kHz, OSC3 = 2 MHz

- Notes: Input interrupts cannot be accepted in SLEEP mode if the CPU enters SLEEP mode when the chattering-eliminate circuit is active. The chattering-eliminate circuit should be turned OFF (CTP2x = "000") before executing the SLP instruction.
  - Be sure to disable interrupts before changing the contents of the CTP2x register. Unnecessary interrupts may occur if the register is changed when the corresponding input port interrupts have been enabled by the interrupt enable register EP2x.
  - The chattering-eliminate check time means the maximum pulse width that can be eliminated. The valid interrupt input needs a pulse width of the set check time (minimum) to twice that of the check time (maximum).
  - The internal signal may oscillate if the rise / fall time of the input signal is too long because the input signal level transition to the threshold level duration of time is too long. This causes the input interrupt to malfunction, therefore setup the input signal so that the rise/fall time is 25 nsec or less.

## 10.6 Details of Control Registers

Table 10.6.1 shows the I/O port control bits.

Table 10.6.1(a) I/O port control bits

| Address | Bit | Name   | Function                     | 1       | 0          | SR | R/W   | Comment |
|---------|-----|--------|------------------------------|---------|------------|----|-------|---------|
| 00FF50  | D7  | IOC07  | P07 I/O control register     |         |            |    |       |         |
|         | D6  | IOC06  | P06 I/O control register     |         |            |    |       |         |
|         | D5  | IOC05  | P05 I/O control register     |         |            |    |       |         |
|         | D4  | IOC04  | P04 I/O control register     |         | _          |    |       |         |
|         | D3  | IOC03  | P03 I/O control register     | Output  | Input      | 0  | R/W   |         |
|         | D2  | IOC02  | P02 I/O control register     |         |            |    |       |         |
|         | D1  | IOC01  | P01 I/O control register     |         |            |    |       |         |
|         | D0  | IOC00  | P00 I/O control register     |         |            |    |       |         |
| 00FF51  | D7  | IOC17  | P17 I/O control register     |         |            |    |       |         |
|         | D6  | IOC16  | P16 I/O control register     |         |            |    |       |         |
|         | D5  | IOC15  | P15 I/O control register     |         |            |    |       |         |
|         | D4  | IOC14  | P14 I/O control register     |         | <b>*</b> . |    | DAV   |         |
|         | D3  | IOC13  | P13 I/O control register     | Output  | Input      | 0  | R/W   |         |
|         | D2  | IOC12  | P12 I/O control register     |         |            |    |       |         |
|         | D1  | IOC11  | P11 I/O control register     |         |            |    |       |         |
|         | D0  | IOC10  | P10 I/O control register     |         |            |    |       |         |
| 00FF52  | D7  | P07D   | P07 I/O port data            |         |            |    |       |         |
|         | D6  | P06D   | P06 I/O port data            |         |            |    |       |         |
|         | D5  | P05D   | P05 I/O port data            |         |            |    |       |         |
|         | D4  | P04D   | P04 I/O port data            | · · · · | •          | 1  | DAV   |         |
|         | D3  | P03D   | P03 I/O port data            | High    | Low        | 1  | R/W   |         |
|         | D2  | P02D   | P02 I/O port data            |         |            |    |       |         |
|         | D1  | P01D   | P01 I/O port data            |         |            |    |       |         |
|         | D0  | P00D   | P00 I/O port data            |         |            |    |       |         |
| 00FF53  | D7  | P17D   | P17 I/O port data            |         |            |    |       |         |
|         | D6  | P16D   | P16 I/O port data            |         |            |    |       |         |
|         | D5  | P15D   | P15 I/O port data            |         |            |    |       |         |
|         | D4  | P14D   | P14 I/O port data            | TT:-1   | T          | 1  | R/W   |         |
|         | D3  | P13D   | P13 I/O port data            | High    | Low        | 1  | K/ W  |         |
|         | D2  | P12D   | P12 I/O port data            |         |            |    |       |         |
|         | D1  | P11D   | P11 I/O port data            |         |            |    |       |         |
|         | D0  | P10D   | P10 I/O port data            |         |            |    |       |         |
| 00FF54  | D7  | PULP07 | P07 pull-up control register |         |            |    |       |         |
|         | D6  | PULP06 | P06 pull-up control register |         |            |    |       |         |
|         |     |        | P05 pull-up control register |         |            |    |       |         |
|         |     |        | P04 pull-up control register | On      | Off        | 1  | R/W   |         |
|         |     |        | P03 pull-up control register | 011     | 011        |    | 10 11 |         |
|         |     |        | P02 pull-up control register |         |            |    |       |         |
|         |     |        | P01 pull-up control register |         |            |    |       |         |
|         | D0  | PULP00 | P00 pull-up control register |         |            |    |       |         |
| 00FF55  |     |        | P17 pull-up control register |         |            |    |       |         |
|         |     |        | P16 pull-up control register |         |            |    |       |         |
|         |     |        | P15 pull-up control register |         |            |    |       |         |
|         |     |        | P14 pull-up control register | On      | Off        | 1  | R/W   |         |
|         |     |        | P13 pull-up control register | 2       |            | .  |       |         |
|         |     |        | P12 pull-up control register |         |            |    |       |         |
|         |     |        | P11 pull-up control register |         |            |    |       |         |
|         | D0  | PULP10 | P10 pull-up control register |         |            |    |       |         |

| Address | Bit | Name     | Table 10.6.1(b)I/O portFunction                                                                               | 1          | 0         | SR | R/W   | Comment             |
|---------|-----|----------|---------------------------------------------------------------------------------------------------------------|------------|-----------|----|-------|---------------------|
| 00FF60  | D7  | IOC27    | P27 I/O control register                                                                                      |            |           |    |       |                     |
|         | D6  | IOC26    | P26 I/O control register                                                                                      |            |           |    |       |                     |
|         | D5  | IOC25    | P25 I/O control register                                                                                      |            |           |    |       |                     |
|         |     | IOC24    | P24 I/O control register                                                                                      |            |           |    |       |                     |
|         |     | IOC23    | P23 I/O control register                                                                                      | Output     | Input     | 0  | R/W   |                     |
|         |     | IOC22    | P22 I/O control register                                                                                      |            |           |    |       |                     |
|         |     | IOC21    | P21 I/O control register                                                                                      |            |           |    |       |                     |
|         |     | IOC20    | P20 I/O control register                                                                                      |            |           |    |       |                     |
| 00FF62  | _   | P27D     | P27 I/O port data                                                                                             |            |           |    |       |                     |
|         |     | P26D     | P26 I/O port data                                                                                             |            |           |    |       |                     |
|         |     | P25D     | P25 I/O port data                                                                                             |            |           |    |       |                     |
|         |     | P24D     | P24 I/O port data                                                                                             |            |           |    |       |                     |
|         |     | P23D     | P23 I/O port data                                                                                             | High       | Low       | 1  | R/W   |                     |
|         |     | P22D     | P22 I/O port data                                                                                             |            |           |    |       |                     |
|         |     | P21D     | P21 I/O port data                                                                                             |            |           |    |       |                     |
|         |     | P20D     | P20 I/O port data                                                                                             |            |           |    |       |                     |
| 00FF64  |     |          | P27 pull-up control register                                                                                  |            |           |    |       |                     |
| 006604  |     |          |                                                                                                               |            |           |    |       |                     |
|         |     |          | P26 pull-up control register                                                                                  |            |           |    |       |                     |
|         |     |          | P25 pull-up control register                                                                                  |            |           |    |       |                     |
|         |     |          | P24 pull-up control register                                                                                  | On         | Off       | 1  | R/W   |                     |
|         |     |          | P23 pull-up control register                                                                                  |            |           |    |       |                     |
|         |     |          | P22 pull-up control register                                                                                  |            |           |    |       |                     |
|         |     |          | P21 pull-up control register                                                                                  |            |           |    |       |                     |
|         |     |          | P20 pull-up control register                                                                                  |            |           |    |       |                     |
| 00FF66  |     | PCP27    | P27 input comparison register                                                                                 |            |           |    |       |                     |
|         |     | PCP26    | P26 input comparison register                                                                                 |            |           |    |       |                     |
|         |     | PCP25    | P25 input comparison register                                                                                 | Interrupt  | Interrupt |    |       |                     |
|         |     | PCP24    | P24 input comparison register                                                                                 | occurred   | occurred  | 1  | R/W   |                     |
|         |     | PCP23    | P23 input comparison register                                                                                 | at falling | at rising | -  |       |                     |
|         |     | PCP22    | P22 input comparison register                                                                                 | edge       | edge      |    |       |                     |
|         | D1  | PCP21    | P21 input comparison register                                                                                 |            |           |    |       |                     |
|         | D0  | PCP20    | P20 input comparison register                                                                                 |            |           |    |       |                     |
| 00FF68  | D7  | _        |                                                                                                               | -          | -         | 0  | R     | "0" when being read |
|         | D6  | CTP22H   | P24-P27 port chattering-eliminate setup                                                                       |            |           | 0  | R/W   |                     |
|         |     |          | (Input level check time)Check timeCTP22H CTP21H CTP20H[sec]                                                   |            |           |    |       |                     |
|         |     | OTDOALL  | $\frac{\text{CTP22H}}{1} \frac{\text{CTP21H}}{1} \frac{\text{CTP20H}}{1} \frac{\text{[sec]}}{4/\text{fosc3}}$ |            |           |    |       |                     |
|         | D5  | CTP21H   | 1 1 0 2/fosc3                                                                                                 |            |           | 0  | R/W   |                     |
|         |     |          | 1 0 1 1/fosc3<br>1 0 0 4096/fosc1                                                                             |            |           |    |       |                     |
|         | D4  | CTP20H   | 0 1 1 2048/fosc1                                                                                              |            |           | 0  | R/W   |                     |
|         |     | 211 2011 | 0 1 0 512/fosci<br>0 0 1 128/fosci                                                                            |            |           |    |       |                     |
|         |     |          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                          |            |           |    |       |                     |
|         | D3  | _        | -                                                                                                             | -          | -         | 0  | R     | "0" when being read |
|         | D2  | CTP22L   | P20-P23 port chattering-eliminate setup                                                                       |            |           | 0  | R/W   |                     |
|         |     |          | (Input level check time) Check time                                                                           |            |           |    |       |                     |
|         |     |          | $\frac{\text{CTP22L}}{1} \frac{\text{CTP21L}}{1} \frac{\text{CTP20L}}{1} \frac{\text{[sec]}}{4/\text{fosc3}}$ |            |           |    |       |                     |
|         | D1  | CTP21L   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                          |            |           | 0  | R/W   |                     |
|         |     |          | 1 0 1 1/fosc3                                                                                                 |            |           |    |       |                     |
|         |     | CTDOOL   | 1 0 0 4096/fosc1<br>0 1 1 2048/fosc1                                                                          |            |           |    | D/117 |                     |
|         | טטן | CTP20L   | 0 1 0 512/fosci                                                                                               |            |           | 0  | R/W   |                     |
|         |     |          | 0 0 1 128/fosci<br>0 0 0 None                                                                                 |            |           | 1  | 1     |                     |

Table 10.6.1(b) I/O port control bits

#### *P00D–P07D: 00FF52H P10D–P17D: 00FF53H P20D–P27D: 00FF62H*

These registers are used to read Pxx I/O port terminal data and to set output data.

#### When writing data:

When "1" is written: HIGH level When "0" is written: LOW level

When the I/O port is set to output mode, the data written is output as is to the I/O port terminal. In terms of port data, when "1" is written, the port terminal goes to HIGH (VDD) level and when "0" is written to a LOW (VSS) level.

Even when the port is in input mode, data can still be written in.

#### When reading out data:

| When "1" is read: | HIGH level ("1") |
|-------------------|------------------|
| When "0" is read: | LOW level ("0")  |

When an I/O port is in input mode, the voltage level being input to the port terminal is read out. When terminal voltage is HIGH (VDD), it is read as a "1", and when it is LOW (Vss), it is read as a "0". Furthermore, in output mode, the contents of the data register are read out.

At initial reset, this register is set to "1" (HIGH level).

Note: The data registers of the ports that are configured to the data bus and serial interface outputs can be used as generalpurpose registers that do not affect the terminal input/output status.

#### *10C00–10C07: 00FF50H 10C10–10C17: 00FF51H 10C20–10C27: 00FF60H*

Sets the I/O ports to input or output mode.

When "1" is written:Output modeWhen "0" is written:Input modeReading:Valid

IOCxx is the I/O control register which corresponds to each I/O port (in bit units). Writing "1" to the IOCxx register will set the corresponding I/O port Pxx to output mode, and writing "0" will set it to input mode. When the special output is used, "1" must always be set for the I/O control registers of I/O ports which will become output terminals. At initial reset, this register is set to "0" (input mode).

Note: The I/O control registers of the ports that are configured to the data bus and serial interface inputs/outputs can be used as general-purpose registers that do not affect the terminal input/output status.

#### PULP00-PULP07: 00FF54H PULP10-PULP17: 00FF55H PULP20-PULP27: 00FF64H

Enables pull-up during input mode.

| When "1" is written: | Pull-up ON  |
|----------------------|-------------|
| When "0" is written: | Pull-up OFF |
| Reading:             | Valid       |

PULPxx is the pull-up control register corresponding to each I/O port (in bit units). When "Gate direct" is selected by mask option, the corresponding pull-up control register is disconnected from the input line, so it can be used as a general-purpose register.

By writing "1" to the PULPxx register, the corresponding I/O ports are pulled up (during input mode), while writing "0" turns the pull-up function OFF.

At initial reset, these registers are all set to "1", so the pull-up function is enabled.

Note: The pull-up control registers of the ports that are configured to the serial interface outputs can be used as general-purpose registers that do not affect the pull-up control. The pull-up control registers of the port that are configured to the data bus and serial interface inputs function the same as the I/O port.

#### PCP20-PCP27: 00FF66H

Sets the interrupt generation condition (interrupt generation timing) for input port terminals P20–P27.

When "1" is written:Falling edgeWhen "0" is written:Rising edgeReading:Valid

PCP2x is the input comparison register which corresponds to the input port P2x. When PCP2x is set to "1", interrupts from the P2x port are generated at the falling edge of the input signal. When PCP2x is set to "0", interrupts are generated at the rising edge.

At initial reset, this register is set to "1" (falling edge).

#### CTP20L-CTP22L: 00FF68H•D0-D2

Sets the input level check time of the chatteringeliminate circuit for the P20–P23 port interrupts as shown in Table 10.6.2.

|        |        | 0      | I                            |
|--------|--------|--------|------------------------------|
| CTP22L | CTP21L | CTP20L | Input level check time [sec] |
| 1      | 1      | 1      | 4/fosc3                      |
| 1      | 1      | 0      | 2/fosc3                      |
| 1      | 0      | 1      | 1/fosc3                      |
| 1      | 0      | 0      | 4096/fosc1                   |
| 0      | 1      | 1      | 2048/fosc1                   |
| 0      | 1      | 0      | 512/fosc1                    |
| 0      | 0      | 1      | 128/fosc1                    |
| 0      | 0      | 0      | None                         |

Table 10.6.2 Setting the input level check time

Be sure to disable interrupts before changing the contents of this register. Unnecessary interrupts may occur if the register is changed when the corresponding input port interrupts have been enabled by the interrupt enable register EP2x. At initial reset, this register is set to "0" (None).

#### CTP20H-CTP22H: 00FF58H•D4-D6

Sets the input level check time of the chatteringeliminate circuit for the P24–P27 input port interrupts as shown in Table 10.6.3.

Table 10.6.3 Setting the input level check time

| CTP22H | CTP21H | CTP20H | Input level check time [sec] |
|--------|--------|--------|------------------------------|
| 1      | 1      | 1      | 4/fosc3                      |
| 1      | 1      | 0      | 2/fosc3                      |
| 1      | 0      | 1      | 1/fosc3                      |
| 1      | 0      | 0      | 4096/fosc1                   |
| 0      | 1      | 1      | 2048/fosc1                   |
| 0      | 1      | 0      | 512/fosc1                    |
| 0      | 0      | 1      | 128/fosc1                    |
| 0      | 0      | 0      | None                         |

Be sure to disable interrupts before changing the contents of this register. Unnecessary interrupt may occur if the register is changed when the corresponding input port interrupts have been enabled by the interrupt enable register EP2x. At initial reset, this register is set to "0" (None).

## 10.7 Precautions

(1) When changing the port terminal in which the pull-up resistor is enabled from LOW level to HIGH, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an I/O port. Make this wait time the amount of time or more calculated by the following expression.

## Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

(2) Be sure to disable interrupts before changing the contents of the CTP2x register. Unnecessary interrupts may occur if the register is changed when the corresponding input port interrupts have been enabled by the interrupt enable register EP2x.

## **11 SERIAL INTERFACE**

## 11.1 Configuration of Serial Interface

The S1C88655 incorporates a full duplex serial interface (when asynchronous system is selected) that allows the user to select either clock synchronous system or asynchronous system. The data transfer method can be selected in software. When the clock synchronous system is selected, 8-bit data transfer is possible. When the asynchronous system is selected, either 7-bit or 8bit data transfer is possible, and a parity check of received data and the addition of a parity bit for transmitting data can automatically be done by selecting in software. Figure 11.1.1 shows the configuration of the serial interface.

Note: Ch. 0 and Ch. 1 have the same circuit configuration and functions. The signal and control bit names are suffixed by a 0 or 1 to indicate the channel number, enabling discrimination between channels 0 and 1. In this manual, however, channel numbers 0 and 1 are replaced with "x" unless discrimination is necessary, because explanations are common to both channels.

### 11.2 Switching Terminal Functions

The serial interface Ch. 0 input/output terminals, SIN0, SOUT0, SCLK0, and SRDY0 are shared with the I/O ports P10–P13. Also Ch. 1 input/output terminals, SIN1, SOUT1, SCLK1, and SRDY1 are shared with the I/O ports P14–P17. In order to utilize these terminals for the serial interface input/output terminals, "1" must be written to the ESIFx register. At initial reset, these terminals are set as I/O port terminals.

The direction of I/O port terminals set for serial interface input/output terminals are determined by the signal and transfer mode for each terminal. Furthermore, the settings for the corresponding I/O control registers for the I/O ports become invalid.

|          | e e g g g e e e g e g e e g e e g e e g e e g e e g e e g e e g e e g e e g e e g e e g e e g e e g e e g e e g |
|----------|-----------------------------------------------------------------------------------------------------------------|
| Terminal | When serial interface is selected                                                                               |
| P10      | SINO                                                                                                            |
| P11      | SOUT0                                                                                                           |
| P12      | <b>SCLK0</b>                                                                                                    |
| P13      | <b>SRDY</b> 0                                                                                                   |
| P14      | SIN1                                                                                                            |
| P15      | SOUT1                                                                                                           |
| P16      | SCLK1                                                                                                           |
| P17      | <b>SRDY1</b>                                                                                                    |

Table 11.2.1 Configuration of input/output terminals

\* The terminals used may vary depending on the transfer mode.

The serial interface terminals are configured according to the transfer mode set using the registers SMDx0 and SMDx1. SINx and SOUTx are serial data input and output terminals which function identically in clock synchronous system and asynchronous system. SCLKx is exclusively for use with clock synchronous system and functions as a synchronous clock input/output terminal. SRDYx is exclusively for use in clock synchronous slave mode and functions as a send-receive ready signal output terminal. When asynchronous system is selected, since SCLKx and SRDYx are superfluous, the I/O port terminals P12 (P16) and P13 (P17) can be used as I/O ports. In the same way, when clock synchronous master mode is selected, since  $\overline{\text{SRDYx}}$  is superfluous, the I/O port terminal P13 (P17) can be used as an I/O port.

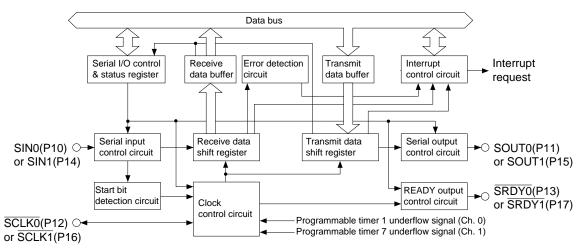



Fig. 11.1.1 Configuration of serial interface

## 11.3 Transfer Modes

There are four transfer modes for the serial interface and mode selection is made by setting the two bits of the mode selection registers SMDx0 and SMDx1 as shown in the table below.

Table 11.3.1 Transfer modes

| SMDx1 | SMDx0 | Mode                     |
|-------|-------|--------------------------|
| 1     | 1     | Asynchronous 8-bit       |
| 1     | 0     | Asynchronous 7-bit       |
| 0     | 1     | Clock synchronous slave  |
| 0     | 0     | Clock synchronous master |

| Table 11.3.2 | Terminal settings corresponding |
|--------------|---------------------------------|
|              | to each transfer mode           |

| Mode                     | SINx  | SOUTx  | SCLKx   | SRDYx   |
|--------------------------|-------|--------|---------|---------|
| Asynchronous 8-bit       | Input | Output | P12/P16 | P13/P17 |
| Asynchronous 7-bit       | Input | Output | P12/P16 | P13/P17 |
| Clock synchronous slave  | Input | Output | Input   | Output  |
| Clock synchronous master | Input | Output | Output  | P13/P17 |

At initial reset, transfer mode is set to clock synchronous master mode.

#### Clock synchronous master mode

In this mode, the internal clock is utilized as a synchronous clock for the built-in shift registers, and clock synchronous 8-bit serial transfers can be performed with this serial interface as the master.

The synchronous clock is also output from the SCLKx terminal which enables control of the external (slave side) serial I/O device. Since the SRDYx terminal is not utilized in this mode, it can be used as an I/O port.

Figure 11.3.1(a) shows the connection example of input/output terminals in the clock synchronous master mode.

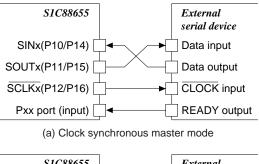
#### Clock synchronous slave mode

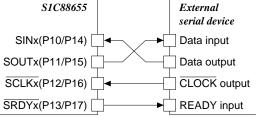
In this mode, a synchronous clock from the external (master side) serial input/output device is utilized and clock synchronous 8-bit serial transfers can be performed with this serial interface as the slave.

The synchronous clock is input to the SCLKx terminal and is utilized by this interface as the synchronous clock.

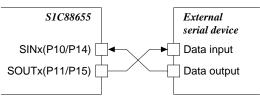
Furthermore, the SRDYx signal indicating the transmit-receive ready status is output from the SRDYx terminal in accordance with the serial interface operating status.

In the slave mode, the settings for registers SCSx0 and SCSx1 used to select the clock source are invalid.


Figure 11.3.1(b) shows the connection example of input/output terminals in the clock synchronous slave mode.


#### Asynchronous 7-bit mode

In this mode, asynchronous 7-bit transfer can be performed. Parity check during data reception and addition of parity bit (odd/even/none) during transmitting can be specified and data processed in 7 bits with or without parity. Since this mode employs the internal clock, the SCLKx terminal is not used. Furthermore, since the SRDYx terminal is not utilized either, both of these terminals can be used as I/O ports. Figure 11.3.1(c) shows the connection example of input/output terminals in the asynchronous mode.


#### Asynchronous 8-bit mode

In this mode, asynchronous 8-bit transfer can be performed. Parity check during data reception and addition of parity bit (odd/even/none) during transmitting can be specified and data processed in 8 bits with or without parity. Since this mode employs the internal clock, the SCLKx terminal is not used. Furthermore, since the SRDYx terminal is not utilized either, both of these terminals can be used as I/O ports. Figure 11.3.1(c) shows the connection example of input/output terminals in the asynchronous mode.





(b) Clock synchronous slave mode



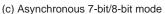



Fig. 11.3.1 Connection examples of serial interface I/O terminals

## 11.4 Clock Source

There are four clock sources and selection is made by setting the two bits of the clock source selection register SCSx0 and SCSx1 as shown in table below.

| Table 11.4.1 Clock source |       |                              |  |  |
|---------------------------|-------|------------------------------|--|--|
| SCSx1                     | SCSx0 | Clock source                 |  |  |
| 1                         | 1     | Programmable timer 1 (Ch. 0) |  |  |
|                           |       | Programmable timer 7 (Ch. 1) |  |  |
| 1                         | 0     | fosc3 / 4                    |  |  |
| 0                         | 1     | fosc3 / 8                    |  |  |
| 0                         | 0     | fosc3 / 16                   |  |  |

This register setting is invalid in clock synchronous slave mode and the external clock input from the SCLKx terminal is used.

When the "programmable timer " is selected, the underflow signal of the programmable timer 1 for Ch. 0 or timer 7 for Ch. 1 is divided by 2 and the divided signal is used as the clock source. With respect to the transfer rate setting, see Chapter 13, "Programmable Timer".

At initial reset, the synchronous clock is set to "fosc3/16".

Whichever clock is selected, the signal is further divided by 16 and then used as the synchronous clock.

Furthermore, external clock input is used as is for  $\overline{\text{SCLKx}}$  in clock synchronous slave mode.

When the divided signal of the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the serial interface.

A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before starting transmitting/receiving of serial interface. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 19, "Electrical Characteristics".) At initial reset, the OSC3 oscillation circuit is set to ON status.

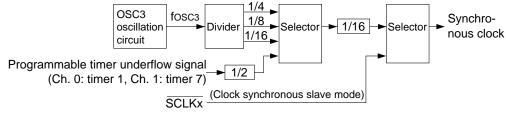



Fig. 11.4.1 Division of the synchronous clock

## 11.5 Transmit/Receive Control

Below is a description of the registers which handle transmit/receive control. With respect to transmit/ receive control procedures and operations, please refer to the following sections in which these are discussed on a mode by mode basis.

#### Shift register and transmit/received data buffer

Exclusive shift registers for transmitting and receiving are installed in this serial interface. Consequently, duplex communication simultaneous transmit and receive is possible when the asynchronous system is selected.

In the transmit section, a transmit data buffer is installed separate from the shift register. When data transmission is started, the data in the transmit data buffer is converted to serial through the shift register and output from the SOUTx terminal. Data can be written to the transmit data buffer asynchronously with the serial output, this allows highly efficient continuous data transfer.

In the reception section, a received data buffer is installed separate from the shift register. Data being received are input to the SINx terminal and is converted to parallel through the shift register and written to the received data buffer.

Since the received data buffer can be read even during serial input operation, the continuous data is received efficiently.

However, since buffer functions are not used in clock synchronous mode, be sure to read out data before the next data reception begins.

#### Transmit enable register and transmit control bit

For transmitting control, use the transmit enable register TXENx and transmit control bit TXTRGx.

The transmit enable register TXENx is used to set the transmitting enable/disable status. When "1" is written to this register to set the transmitting enable status, clock input to the shift register is enabled and the system is ready to transmit data. In the clock synchronous mode, synchronous clock input/output from the SCLKx terminal is also enabled. The transmit control bit TXTRGx is used as the trigger to start transmitting data. Prepare data transmission by writing data to the transmit data buffer and write "1" to TXTRGx. Then the data in the transmit data buffer is loaded to the transmit data shift register and data transmission begins. When interrupt has been enabled, an interrupt is generated when the transmission is completed. If there is subsequent data to be

transmitted it can be sent using this interrupt.

In addition, TXTRGx can be read as the status. When set to "1", it indicates transmitting operation, and "0" indicates transmitting stop. For details on timing, see the timing chart which gives the timing for each mode. When not transmitting, set TXENx to "0" to disable transmitting status.

#### Receive enable register and receive control bit

For receiving control, use the receive enable register RXENx and receive control bit RXTRGx. Receive enable register RXENx is used to set receiving enable/disable status. When "1" is written into this register to set the receiving enable status, clock input to the shift register is enabled and the system is ready to receive data. In the clock synchronous mode, synchronous clock input/output from the SCLKx terminal is also enabled.

With the above setting, receiving begins and serial data input from the SINx terminal goes to the shift register.

The operation of the receive control bit RXTRGx is slightly different depending on whether a clock synchronous system or an asynchronous system is being used.

In the clock synchronous system, the receive control bit RXTRGx is used as the trigger to start receiving data.

When received data has been read and the preparation for next data receiving is completed, write "1" into RXTRGx to start receiving. (When "1" is written to RXTRGx in slave mode, SRDYx switches to "0".) In an asynchronous system, RXTRGx is used to prepare for next data receiving. After reading the received data from the received data buffer, write "1" into RXTRGx to signify that the received data buffer is empty. If "1" is not written into RXTRGx, the overrun error flag OERx will be set to "1" when the next receiving operation is completed. (An overrun error will be generated when receiving is completed between reading the received data and the writing of "1" to RXTRGx.)

In addition, RXTRGx can be read as the status. In either clock synchronous mode or asynchronous mode, when RXTRGx is set to "1", it indicates receiving operation and when set to "0", it indicates that receiving has stopped. For details on timing, see the timing chart which gives the timing for each mode. When you do not receive, set RXENx to "0" to disable receiving status.

## 11.6 Operation of Clock Synchronous Transfer

Clock synchronous transfer involves the transfer of 8-bit data by synchronizing it to eight clocks. The same synchronous clock is used by both the transmitting and receiving sides.

When the serial interface is used in the master mode, the clock signal selected using SCSx0 and SCSx1 is further divided by 1/16 and employed as the synchronous clock. This signal is then sent via the SCLKx terminal to the slave side (external serial I/O device).

When used in the slave mode, the clock input to the SCLKx terminal from the master side (external serial input/output device) is used as the synchronous clock.

In the clock synchronous mode, since one clock line (SCLKx) is shared for both transmitting and receiving, transmitting and receiving cannot be performed simultaneously. (Half duplex only is possible in clock synchronous mode.)

The transfer data length is fixed at 8 bits. Data can be switched using a register whether it is transmitted/received from LSB (bit 0) or MSB (bit 7).

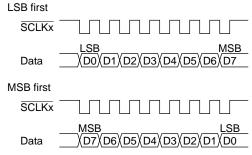



Fig. 11.6.1 Transfer data configuration using clock synchronous mode

Below is a description of initialization when performing clock synchronous transfer, transmitreceive control procedures and operations. With respect to serial interface interrupt, see "11.8 Interrupt Function".

- Initialization of serial interface When performing clock synchronous transfer, the following initial settings must be made.
- (1) Setting of transmitting/receiving disable To set the serial interface into a status in which both transmitting and receiving are disabled, "0" must be written to both the transmit enable register TXENx and the receive enable register RXENx. Fix these two registers to a disable status until data transfer actually begins.

(2) Port selection

Because serial interface input/output ports SINx, SOUTx, SCLKx and SRDYx are set as I/O port terminals P10–P13 (P14–P17) at initial reset, "1" must be written to the serial interface enable register ESIFx in order to set these terminals for serial interface use.

(3) Setting of transfer mode

Select the clock synchronous mode by writing the data as indicated below to the two bits of the mode selection registers SMDx0 and SMDx1.

| Master mode: | SMDx0 = "0", SMDx1 = "0" |
|--------------|--------------------------|
| Slave mode:  | SMDx0 = "1", SMDx1 = "0" |

(4) Clock source selection

In the master mode, select the synchronous clock source by writing data to the two bits of the clock source selection registers SCSx0 and SCSx1. (See Table 11.4.1.)

This selection is not necessary in the slave mode.

Since all the registers mentioned in (2)-(4) are assigned to the same address, it's possible to set them all with one instruction. The parity enable register EPRx is also assigned to this address, however, since parity is not necessary in the clock synchronous mode, parity check will not take place regardless of how they are set.

(5) Clock source control

When the master mode is selected and programmable timer for the clock source is selected, set transfer rate on the programmable timer side. (See Chapter 13, "Programmable Timer".)

When the divided signal of OSC3 oscillation circuit is selected for the clock source, be sure that the OSC3 oscillation circuit is turned ON prior to commencing data transfer. (See Chapter 8, "Oscillation Circuits".)

(6) Serial data input/output permutation The S1C88655 provides the data input/output permutation select register SDPx to select whether the serial data bits are transferred from the LSB or MSB. The SDPx register should be set before writing data to TXDx0-TXDx7.

#### Data transmit procedure

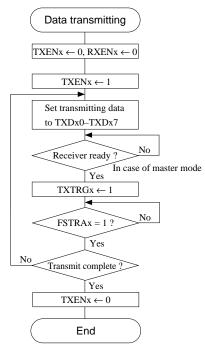



Fig. 11.6.2 Transmit procedure in clock synchronous mode

The control procedure and operation during transmitting is as follows.

- (1) Write "0" in the transmit enable register TXENx and the receive enable register RXENx to reset the serial interface.
- (2) Write "1" in the transmit enable register TXENx to set into the transmitting enable status.
- (3) Write the transmitting data into TXDx0-TXDx7.
- (4) In case of the master mode, confirm the receive ready status on the slave side (external serial input/output device), if necessary. Wait until it reaches the receive ready status.
- (5) Write "1" in the transmit control bit TXTRGx and start transmitting.

In the master mode, this control causes the synchronous clock to change to enable and to be provided to the shift register for transmitting and output from the SCLKx terminal. In the slave mode, it waits for the synchronous clock to be input from the SCLKx terminal. The transmitting data of the shift register shifts one bit at a time at each falling edge of the synchronous clock and is output from the SOUTx terminal. When the final bit (MSB when "LSB first" is selected, or LSB when "MSB first" is selected) is output, the SOUTx terminal is maintained at that level, until the next transmitting begins. The transmitting complete interrupt factor flag FSTRAx is set to "1" at the point where the data transmitting of the shift register is completed. When interrupt has been enabled, a transmitting complete interrupt is generated at this point.

Set the following transmitting data using this interrupt.

(6) Repeat steps (3) to (5) for the number of bytes of transmitting data, and then set the transmit disable status by writing "0" to the transmit enable register TXENx, when the transmitting is completed.

#### Data receive procedure

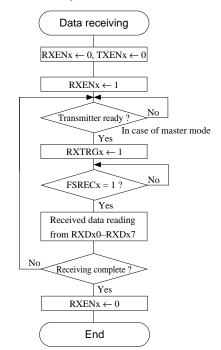



Fig. 11.6.3 Receiving procedure in clock synchronous mode

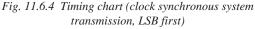
The control procedure and operation during receiving is as follows.

- (1) Write "0" in the receive enable register RXENx and transmit enable register TXENx to reset the serial interface.
- (2) Write "1" in the receive enable register RXENx to set into the receiving enable status.
- (3) In case of the master mode, confirm the transmit ready status on the slave side (external serial input/output device), if necessary. Wait until it reaches the transmit ready status.

(4) Write "1" in the receive control bit RXTRGx and start receiving.

In the master mode, this control causes the synchronous clock to change to enable and is provided to the shift register for receiving and output from the  $\overline{SCLKx}$  terminal. In the slave mode, it waits for the synchronous clock to be input from the  $\overline{SCLKx}$  terminal. The received data input from the SINx terminal is successively incorporated into the shift register in synchronization with the rising edge of the synchronous clock.

At the point where the data of the 8th bit has been incorporated at the final (8th) rising edge of the synchronous clock, the content of the shift register is sent to the received data buffer and the receiving complete interrupt factor flag FSRECx is set to "1". When interrupt has been enabled, a receiving complete interrupt is generated at this point.


- (5) Read the received data from RXDx0-RXDx7 using receiving complete interrupt.
- (6) Repeat steps (3) to (5) for the number of bytes of receiving data, and then set the receive disable status by writing "0" to the receive enable register RXENx, when the receiving is completed.

Transmit/receive ready (SRDYx) signal When this serial interface is used in the clock synchronous slave mode (external clock input), an **SRDYx** signal is output to indicate whether or not this serial interface can transmit/receive to the master side (external serial input/output device). This signal is output from the SRDYx terminal and when this interface enters the transmit or receive enable (READY) status, it becomes "0" (LOW level) and becomes "1" (HIGH level) when there is a BUSY status, such as during transmit/receive operation. The SRDYx signal changes the "1" to "0," immediately after writing "1" into the transmit control bit TXTRGx or the receive control bit RXTRGx and returns from "0" to "1", at the point where the first synchronous clock has been input (falling edge).

When you have set in the master mode, control the transfer by inputting the same signal from the slave side using the input port or I/O port. At this time, since the SRDYx terminal is not set and instead P13 (P17) functions as the I/O port, you can apply this port for said control.

#### Timing chart The timing chart for the clock synchronous system transmission is shown in Figure 11.6.4. TXENx TXTRGx (RD) TXTRGx (WR) SCLKx SOUTx (D0)(D1)(D2)(D3)(D4)(D5)(D6)(D7) Interrupt (a) Transmit timing for master mode **TXEN**x TXTRGx (RD) TXTRGx (WR) SCI Kx SOUT (D0)(D1)(D2)(D3)(D4)(D5)(D6)(D7) **SRDY**x Interrupt (b) Transmit timing for slave mode **RXEN**x RXTRGx (RD) RXTRGx (WR) SCLKx SINx (D0/D1/D2/D3/D4/D5/D6/D7 RXDx 7F 1st data Interrupt (c) Receive timing for master mode RXENx RXTRGx (RD) RXTRGx (WR) **SCLK**x $| \square \square \square \square \square \square \square \square \square$ (D0(D1(D2)(D3)(D4)(D5)(D6)(D7) SINx RXDx 1st data / 7F

(d) Receive timing for slave mode



**SRDY**x

Interrupt

## 11.7 Operation of Asynchronous Transfer

Asynchronous transfer is a mode that transfers by adding a start bit and a stop bit to the front and the back of each piece of serial converted data. In this mode, there is no need to use a clock that is fully synchronized clock on the transmit side and the receive side, but rather transmission is done while adopting the synchronization at the start/stop bits that have attached before and after each piece of data. The RS-232C interface functions can be easily realized by selecting this transfer mode.

This interface has separate transmit and receive shift registers and is designed to permit full duplex transmission to be done simultaneously for transmitting and receiving.

For transfer data in the asynchronous 7-bit mode, either 7 bits data (no parity) or 7 bits data + parity bit can be selected. In the asynchronous 8-bit mode, either 8 bits data (no parity) or 8 bits data + parity bit can be selected.

Parity can be even or odd, and parity checking of received data and adding a party bit to transmitting data will be done automatically. Thereafter, it is not necessary to be conscious of parity itself in the program.

The start bit length is fixed at 1 bit. For the stop bit length, either 1 bit or 2 bits can be selected using the stop bit select register STPBx. Whether data is transmitted/received from LSB (bit 0) or MSB (bit 7) it can be switched using the data input/output permutation select register SDPx.

LSB first Sampling clock s1 D0 D1 D2 D3 D4 D5 D6 s2 7bit data 7bit data s1 D0 D1 D2 D3 D4 D5 D6 p s2 +parity s1 D0 D1 D2 D3 D4 D5 D6 D7 s2 8bit data 8bit data s1 D0 D1 D2 D3 D4 D5 D6 D7 p s2 +parity MSB first Sampling clock s1 D6 D5 D4 D3 D2 D1 D0 s2 7bit data 7bit data s1 D6 D5 D4 D3 D2 D1 D0 p s2 +parity 8bit data s1 D7 D6 D5 D4 D3 D2 D1 D0 s2 8bit data s1 D7 D6 D5 D4 D3 D2 D1 D0 p s2 +parity s1: Start bit (Low level, 1 bit) s2: Stop bit (High level, 1 bit or 2 bits)

p : Parity bit

Fig. 11.7.1 Transfer data configuration for asynchronous system

Here following, we will explain the control sequence and operation for initialization and transmitting /receiving in case of asynchronous data transfer. See "11.8 Interrupt Function" for the serial interface interrupts.

- Initialization of serial interface The below initialization must be done in cases of asynchronous system transfer.
- (1) Setting of transmitting/receiving disable To set the serial interface into a status in which both transmitting and receiving are disabled, "0" must be written to both the transmit enable register TXENx and the receive enable register RXENx. Fix these two registers to a disable status until data transfer actually begins.
- (2) Port selection

Because serial interface input/output terminals SINx and SOUTx are set as I/O port terminals P10 (P14) and P11 (P15) at initial reset, "1" must be written to the serial interface enable register ESIFx in order to set these terminals for serial interface use.

SCLKx and SRDYx terminals set in the clock synchronous mode are not used in the asynchronous mode. These terminals function as I/O port terminals P12 (P16) and P13 (P17).

(3) Setting of transfer mode

Select the asynchronous mode by writing the data as indicated below to the two bits of the mode selection registers SMDx0 and SMDx1.

7-bit mode: SMDx0 = "0", SMDx1 = "1" 8-bit mode: SMDx0 = "1", SMDx1 = "1"

(4) Parity bit selection

When checking and adding parity bits, write "1" into the parity enable register EPRx to set to "with parity check". As a result of this setting, in the asynchronous 7-bit mode, it has a 7 bits data + parity bit configuration and in the asynchronous 8-bit mode it has an 8 bits data + parity bit configuration. In this case, parity checking for receiving and adding a party bit for transmitting is done automatically in hardware. Moreover, when "with parity check" has been selected, "odd" or "even" parity must be further selected in the parity mode selection register PMDx. When "0" is written to the EPRx register to select "without parity check" in the asynchronous 7-bit mode, data configuration is set to 7 bits data (no parity) and in the asynchronous 8-bit mode (no parity) it is set to 8 bits data (no parity) and parity checking and parity bit adding will not be done.

(5) Clock source selection

Select the clock source by writing data to the two bits of the clock source selection registers SCSx0 and SCSx1. (See Table 11.4.1.)

Since all the registers mentioned in (2)-(5) are assigned to the same address, it's possible to set them all with one instruction.

- (6) Clock source control When the programmable timer is selected for the clock source, set transfer rate on the programmable timer side. (See Chapter 13, "Programmable Timer".) When the divided signal of OSC3 oscillation circuit is selected for the clock source, be sure that the OSC3 oscillation circuit is turned ON prior to commencing data transfer. (See Chapter 8, "Oscillation Circuits".)
- (7) Stop bit length selection The stop bit length can be configured to 1 bit or 2 bits using the stop bit select register STPBx.

| _ | Table II Stop on and purity on settings |      |        |          |            |  |
|---|-----------------------------------------|------|--------|----------|------------|--|
|   |                                         |      | PMDx   | Sett     | ings       |  |
|   |                                         | EFKX | FIVIDX | Stop bit | Parity bit |  |
| Γ | 1                                       | 1    | 1      | 2 bits   | Odd        |  |
|   |                                         |      | 0      | 2 bits   | Even       |  |
|   |                                         | 0    | -      | 2 bits   | Non parity |  |
|   | 0                                       | 1    | 1      | 1 bit    | Odd        |  |
|   |                                         |      | 0      | 1 bit    | Even       |  |
|   |                                         | 0    | _      | 1 bit    | Non parity |  |

| Table 11.7.1 | Ston | hit and | narity | hit   | ottinos |
|--------------|------|---------|--------|-------|---------|
| 10010 11.7.1 | SIUD | on ana  | purity | Ull S | sennes  |

(8) Serial data input/output permutation The S1C88655 provides the data input/output permutation select register SDPx to select whether the serial data bits are transferred from the LSB or MSB. The SDPx register should be set before writing data to TXDx0-TXDx7.

#### Data transmit procedure

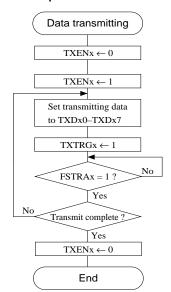



Fig. 11.7.2 Transmit procedure in asynchronous mode

The control procedure and operation during transmitting is as follows.

- (1) Write "0" in the transmit enable register TXENx to reset the serial interface.
- (2) Write "1" in the transmit enable register TXENx to set into the transmitting enable status.
- (3) Write the transmitting data into TXDx0–TXDx7. Also, when 7-bit data is selected, the TXDx7 data becomes invalid.
- (4) Write "1" in the transmit control bit TXTRGx and start transmitting. This control causes the shift clock to change to enable and a start bit (LOW) is output to the SOUTx terminal in synchronize to its falling edge. The transmitting data set to the shift register is shifted one bit at a time at each falling edge of the clock thereafter and is output from the SOUTx terminal. After the data output, it outputs a stop bit (HIGH) and HIGH level is maintained until the next start bit is output. The transmitting complete interrupt factor flag FSTRAx is set to "1" at the point where the data transmitting is completed. When interrupt has been enabled, a transmitting complete interrupt is generated at this point. Set the following transmitting data using this interrupt.
- (5) Repeat steps (3) to (4) for the number of bytes of transmitting data, and then set the transmit disable status by writing "0" to the transmit enable register TXENx, when the transmitting is completed.

#### Data receive procedure

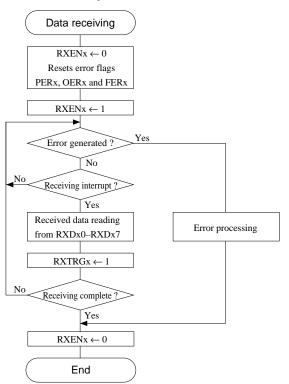



Fig. 11.7.3 Receiving procedure in asynchronous mode

The control procedure and operation during receiving is as follows.

- (1) Write "0" in the receive enable register RXENx to set the receiving disable status and to reset the respective PERx, OERx, FERx flags that indicate parity, overrun and framing errors.
- (2) Write "1" in the receive enable register RXENx to set into the receiving enable status.
- (3) The shift clock will change to enable from the point where the start bit (LOW) has been input from the SINx terminal and the receive data will be synchronized to the rising edge following the second clock, and will thus be successively incorporated into the shift register. After data bits have been incorporated, the stop bit is checked and, if it is not HIGH, it becomes a framing error and the error interrupt factor flag FSERRx is set to "1". When interrupt has been enabled, an error interrupt is generated at this point. When receiving is completed, data in the shift register is transferred to the received data buffer and the receiving complete interrupt flag FSRECx is set to "1". When interrupt has been enabled, a receiving complete interrupt is generated at this point. (When an overrun error is generated, the interrupt factor flag FSRECx is not set to "1" and a receiving complete interrupt is not generated.)

If "with parity check" has been selected, a parity check is executed when data is transferred into the received data buffer from the shift register and if a parity error is detected, the error interrupt factor flag is set to "1". When the interrupt has been enabled, an error interrupt is generated at this point just as in the framing error mentioned above.

- (4) Read the received data from RXDx0–RXDx7 using receiving complete interrupt.
- (5) Write "1" to the receive control bit RXTRGx to inform that the receive data has been read out. When the following data is received prior to writing "1" to RXTRGx, it is recognized as an overrun error and the error interrupt factor flag is set to "1". When the interrupt has been enabled, an error interrupt is generated at this point just as in the framing error and parity error mentioned above.
- (6) Repeat steps (3) to (5) for the number of bytes of receiving data, and then set the receive disable status by writing "0" to the receive enable register RXENx, when the receiving is completed.

#### Receive error

During receiving the following three types of errors can be detected by an interrupt.

(1) Parity error

When writing "1" to the EPRx register to select "with parity check", a parity check (vertical parity check) is executed during receiving. After each data bit is sent a parity check bit is sent. The parity check bit is a "0" or a "1". Even parity checking will cause the sum of the parity bit and the other bits to be even. Odd parity causes the sum to be odd. This is checked on the receiving side.

The parity check is performed when data received in the shift register is transferred to the received data buffer. It checks whether the parity check bit is a "1" or a "0" (the sum of the bits including the parity bit) and the parity set in the PMDx register match. When it does not match, it is recognized as an parity error and the parity error flag PERx and the error interrupt factor flag FSERRx are set to "1". When interrupt has been enabled, an error interrupt is generated at this point. The PERx flag is reset to "0" by writing "1". Even when this error has been generated, the received data corresponding to the error is transferred in the received data buffer and the receive operation also continues. The received data at this point cannot assured because of the parity error.

#### (2) Framing error

In asynchronous transfer, synchronization is adopted for each character at the start bit ("0") and the stop bit ("1"). When receiving has been done with the stop bit set at "0", the serial interface judges the synchronization to be off and a framing error is generated. When this error is generated, the framing error flag FERx and the error interrupt factor flag FSERRx are set to "1". When interrupt has been enabled, an error interrupt is generated at this point. The FERx flag is reset to "0" by writing "1". Even when this error has been generated, the received data corresponding to the error is transferred in the received data buffer and the receive operation also continues. However, even when it does not become a framing error with the following data receiving, such data cannot be assured.

(3) Overrun error

When the next data is received before "1" is written to RXTRGx. an overrun error will be generated, because the previous receive data will be overwritten. When this error is generated, the overrun error flag OERx and the error interrupt factor flag FSERRx are set to "1". When interrupt has been enabled, an error interrupt is generated at this point. The OERx flag is reset to "0" by writing "1" into it. Even when this error has been generated, the received data corresponding to the error is transferred in the received data buffer and the receive operation also continues. Furthermore, when the timing for writing "1" to RXTRGx and the timing for the received data transfer to the received data buffer overlap, it will be recognized as an overrun error.

#### Timing chart

Figure 11.7.4 show the asynchronous transfer timing chart.

| TXENx _                               |                                        |                         |
|---------------------------------------|----------------------------------------|-------------------------|
| TXTRGx (RD)                           |                                        |                         |
| TXTRGx (WR)                           | [                                      |                         |
| Sampling –<br>clock                   |                                        |                         |
| SOUTx<br>(In 8-bit mode/<br>Interrupt | D0 D1 D2 D3 D4 D5 D6 D7<br>Non parity) |                         |
|                                       | (a) Transmit timing                    |                         |
| RXENx                                 |                                        |                         |
| RXTRGx (RD)                           |                                        |                         |
| RXTRGx (WR)                           |                                        |                         |
| Sampling                              | u                                      |                         |
| SINx D0 D1 D2 D3 D4 D5 D6 D           | 7 D0 D1 D2 D3 D4 D5 D6 D7              | D0 D1 D2 D3 D4 D5 D6 D7 |
| (In 8-bit mode/Non parity)<br>RXDx    | 1st data                               | 2nd data                |
| OERx control signal                   |                                        |                         |
| OERx                                  |                                        |                         |
| Interrupt                             | ,<br>► T                               | <b>▲</b>                |
|                                       | (b) Receive timing                     |                         |

Fig. 11.7.4 Timing chart (asynchronous transfer, LSB first, stop bit = 1 bit)

## **11.8 Interrupt Function**

This serial interface includes a function that generates the below indicated three types of interrupts.

- Transmitting complete interrupt
- Receiving complete interrupt
- Error interrupt

The interrupt factor flag FSxxx and the interrupt enable register ESxxx for the respective interrupt factors are provided and then the interrupt enable/ disable can be selected by the software. In addition, a priority level of the serial interface interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PSIFx0 and PSIFx1. For details on the above mentioned interrupt control register and the operation following generation of an interrupt, see Chapter 7, "Interrupt and Standby Status".

Figure 11.8.1 shows the configuration of the serial interface interrupt circuit.

#### Transmitting complete interrupt

This interrupt factor is generated at the point where the sending of the data written into the shift register has been completed and sets the interrupt factor flag FSTRAx to "1". When set in this manner, if the corresponding interrupt enable register ESTRAx is set to "1" and the corresponding interrupt priority registers PSIFx0 and PSIFx1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. When "0" has been written into the interrupt enable register ESTRAx and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSTRAx is set to "1".

The interrupt factor flag FSTRAx is reset to "0" by writing "1".

The following transmitting data can be set and the transmitting start (writing "1" to TXTRGx) can be controlled by generation of this interrupt factor.

The exception processing vector address is set as follows:

Ch. 0 transmitting complete interrupt: 00002AH Ch. 1 transmitting complete interrupt: 000030H

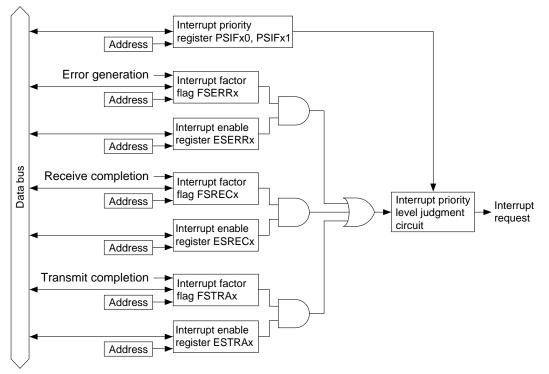



Fig. 11.8.1 Configuration of serial interface interrupt circuit

#### Receiving complete interrupt

This interrupt factor is generated at the point where receiving has been completed and the receive data incorporated into the shift register has been transferred into the received data buffer and it sets the interrupt factor flag FSRECx to "1". When set in this manner, if the corresponding interrupt enable register ESRECx is set to "1" and the corresponding interrupt priority registers PSIFx0 and PSIFx1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU.

When "0" has been written into the interrupt enable register ESRECx and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSRECx is set to "1".

The interrupt factor flag FSRECx is reset to "0" by writing "1".

The generation of this interrupt factor permits the received data to be read.

Also, the interrupt factor flag is set to "1" when a parity error or framing error is generated.

The exception processing vector address is set as follows:

Ch. 0 receiving complete interrupt: 000028H Ch. 1 receiving complete interrupt: 00002EH

#### Error interrupt

This interrupt factor is generated at the point where a parity error, framing error or overrun error is detected during receiving and it sets the interrupt factor flag FSERRx to "1". When set in this manner, if the corresponding interrupt enable register ESERRx is set to "1" and the corresponding interrupt priority registers PSIFx0 and PSIFx1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. When "0" has been written in the interrupt enable register ESERRx and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSERRx is set to "1".

The interrupt factor flag FSERRx is reset to "0" by writing "1".

Since all three types of errors result in the same interrupt factor, you should identify the error that has been generated by the error flags PERx (parity error), OERx (overrun error) and FERx (framing error).

The exception processing vector address is set as follows:

Ch. 0 receive error interrupt: 000026H Ch. 1 receive error interrupt: 00002CH

## 11.9 Details of Control Registers

Table 11.9.1 show the serial interface control bits.

Table 11.9.1(a) Serial interface control bits

| Address | Bit | Name   | Function                                     | 1           | 0            | SR | R/W | Comment               |
|---------|-----|--------|----------------------------------------------|-------------|--------------|----|-----|-----------------------|
| 00FF48  | _   | STPB0  | SIF0 stop bit selection                      | 2 bits      | 1 bit        | 0  | R/W | Only for              |
| 0011.10 |     | EPR0   | SIF0 parity enable register                  | With parity | Non parity   | 0  | R/W | asynchronous mode     |
|         |     | PMD0   | SIF0 parity mode selection                   | Odd         | Even         | 0  | R/W |                       |
|         |     | SCS01  | SIF0 clock source selection                  |             |              | 0  | R/W | In the clock synchro- |
|         |     |        | SCS01 SCS00 Clock source                     |             |              | -  |     | nous slave mode,      |
|         |     |        | 1 1 Programmable timer                       |             |              |    |     | external clock is     |
|         | D3  | SCS00  | 1  0  fosc3 / 4                              |             |              | 0  | R/W | selected.             |
|         |     |        | 0 1 fosc3 / 8                                |             |              |    |     |                       |
|         |     |        | 0 0 fosc3 / 16                               |             |              |    |     |                       |
|         | D2  | SMD01  | SIF0 mode selection                          |             |              | 0  | R/W |                       |
|         |     |        | SMD01 SMD00 Mode                             |             |              |    |     |                       |
|         |     |        | 1 1 Asynchronous 8-bit                       |             |              |    |     |                       |
|         | D1  | SMD00  | 1 0 Asynchronous 7-bit                       |             |              | 0  | R/W |                       |
|         |     |        | 0 1 Clock synchronous slave                  |             |              |    |     |                       |
|         |     |        | 0 0 Clock synchronous master                 |             |              |    |     |                       |
|         | D0  | ESIF0  | SIF0 enable register                         | Serial I/F  | I/O port     | 0  | R/W |                       |
| 00FF49  | D7  | SDP0   | SIF0 data input/output permutation selection | MSB first   | LSB first    | 0  | R/W |                       |
|         | D6  | FER0   | SIF0 framing error flag R                    | Error       | No error     | 0  | R/W | Only for              |
|         |     |        | W                                            | Reset (0)   | No operation |    |     | asynchronous mode     |
|         | D5  | PER0   | SIF0 parity error flag R                     | Error       | No error     | 0  | R/W |                       |
|         |     |        | W                                            | Reset (0)   | No operation |    |     |                       |
|         | D4  | OER0   | SIF0 overrun error flag R                    | Error       | No error     | 0  | R/W |                       |
|         |     |        | W                                            | Reset (0)   | No operation |    |     |                       |
|         | D3  | RXTRG0 | SIF0 receive trigger/status R                | Run         | Stop         | 0  | R/W |                       |
|         |     |        | W                                            | Trigger     | No operation |    |     |                       |
|         | D2  | RXEN0  | SIF0 receive enable                          | Enable      | Disable      | 0  | R/W |                       |
|         | D1  | TXTRG0 | SIF0 transmit trigger/status R               | Run         | Stop         | 0  | R/W |                       |
|         |     |        | W                                            | Trigger     | No operation |    |     |                       |
|         | D0  | TXEN0  | SIF0 transmit enable                         | Enable      | Disable      | 0  | R/W |                       |
| 00FF4A  | D7  | TXD07  | SIF0 transmit data D7 (MSB)                  |             |              |    |     |                       |
|         | D6  | TXD06  | SIF0 transmit data D6                        |             |              |    |     |                       |
|         | D5  | TXD05  | SIF0 transmit data D5                        |             |              |    |     |                       |
|         | D4  | TXD04  | SIF0 transmit data D4                        | High        | Low          | x  | R/W |                       |
|         | D3  | TXD03  | SIF0 transmit data D3                        | Ingn        | Low          |    |     |                       |
|         | D2  | TXD02  | SIF0 transmit data D2                        |             |              |    |     |                       |
|         | D1  | TXD01  | SIF0 transmit data D1                        |             |              |    |     |                       |
|         | D0  | TXD00  | SIF0 transmit data D0 (LSB)                  |             |              |    |     |                       |
| 00FF4B  | D7  | RXD07  | SIF0 receive data D7 (MSB)                   |             |              |    |     |                       |
|         | D6  | RXD06  | SIF0 receive data D6                         |             |              |    |     |                       |
|         | D5  | RXD05  | SIF0 receive data D5                         |             |              |    |     |                       |
|         | D4  | RXD04  | SIF0 receive data D4                         | High        | Low          | x  | R   |                       |
|         | D3  | RXD03  | SIF0 receive data D3                         | nign        | LOW          |    |     |                       |
|         | D2  | RXD02  | SIF0 receive data D2                         |             |              |    |     |                       |
|         | D1  | RXD01  | SIF0 receive data D1                         |             |              |    |     |                       |
|         | D0  | RXD00  | SIF0 receive data D0 (LSB)                   |             |              |    |     |                       |

| Address | Bit | Name           | Table 11.9.1(b) Serial interfo               | 1           | 0            | SR | R/W | Comment               |
|---------|-----|----------------|----------------------------------------------|-------------|--------------|----|-----|-----------------------|
| 00FF4C  | _   | STPB1          | SIF1 stop bit selection                      | 2 bits      | 1 bit        | 0  | R/W |                       |
|         |     | EPR1           | SIF1 parity enable register                  | With parity | Non parity   | 0  | R/W | asynchronous mode     |
|         |     | PMD1           | SIF1 parity mode selection                   | Odd         | Even         | 0  | R/W |                       |
|         |     | SCS11          | SIF1 clock source selection                  |             |              | 0  | R/W | In the clock synchro- |
|         |     |                | SCS11 SCS10 Clock source                     |             |              |    |     | nous slave mode,      |
|         |     |                | 1 1 Programmable timer                       |             |              |    |     | external clock is     |
|         | D3  | SCS10          | 1 0 fosc3 / 4                                |             |              | 0  | R/W | selected.             |
|         |     |                | 0 1 fosc3 / 8                                |             |              |    |     |                       |
|         |     |                | 0 0 fosc3 / 16                               |             |              |    |     |                       |
|         | D2  | SMD11          | SIF1 mode selection                          |             |              | 0  | R/W |                       |
|         |     |                | SMD11 SMD10 Mode                             |             |              |    |     |                       |
|         |     |                | 1 1 Asynchronous 8-bit                       |             |              |    |     |                       |
|         | D1  | SMD10          | 1 0 Asynchronous 7-bit                       |             |              | 0  | R/W |                       |
|         |     |                | 0 1 Clock synchronous slave                  |             |              |    |     |                       |
|         |     |                | 0 0 Clock synchronous master                 |             |              |    |     |                       |
|         | D0  | ESIF1          | SIF1 enable register                         | Serial I/F  | I/O port     | 0  | R/W |                       |
| 00FF4D  | D7  | SDP1           | SIF1 data input/output permutation selection | MSB first   | LSB first    | 0  | R/W |                       |
|         | D6  | FER1           | SIF1 framing error flag R                    | Error       | No error     | 0  | R/W | Only for              |
|         |     |                | W                                            | Reset (0)   | No operation |    |     | asynchronous mode     |
|         | D5  | PER1           | SIF1 parity error flag                       | Error       | No error     | 0  | R/W |                       |
|         |     |                | W                                            | Reset (0)   | No operation |    |     |                       |
|         | D4  | OER1           | SIF1 overrun error flag R                    | Error       | No error     | 0  | R/W |                       |
|         |     |                | W                                            | Reset (0)   | No operation |    |     |                       |
|         | D3  | RXTRG1         | SIF1 receive trigger/status R                | Run         | Stop         | 0  | R/W |                       |
|         |     |                | W                                            | Trigger     | No operation |    |     |                       |
|         |     | RXEN1          | SIF1 receive enable                          | Enable      | Disable      | 0  | R/W |                       |
|         | D1  | TXTRG1         | SIF1 transmit trigger/status                 | Run         | Stop         | 0  | R/W |                       |
|         |     |                | W                                            | Trigger     | No operation |    |     |                       |
|         |     | TXEN1          | SIF1 transmit enable                         | Enable      | Disable      | 0  | R/W |                       |
| 00FF4E  |     | TXD17          | SIF1 transmit data D7 (MSB)                  |             |              |    |     |                       |
|         |     | TXD16          | SIF1 transmit data D6                        |             |              |    |     |                       |
|         |     | TXD15          | SIF1 transmit data D5                        |             |              |    |     |                       |
|         |     | TXD14          | SIF1 transmit data D4                        | High        | Low          | х  | R/W |                       |
|         |     | TXD13          | SIF1 transmit data D3                        |             |              |    |     |                       |
|         |     | TXD12          | SIF1 transmit data D2                        |             |              |    |     |                       |
|         |     |                | SIF1 transmit data D1                        |             |              |    |     |                       |
| 005545  | _   | TXD10          | SIF1 transmit data D0 (LSB)                  |             |              |    |     |                       |
| 00FF4F  |     | RXD17<br>RXD16 | SIF1 receive data D7 (MSB)                   |             |              |    |     |                       |
|         |     | RXD16          | SIF1 receive data D6                         |             |              |    |     |                       |
|         |     | RXD15          | SIF1 receive data D5<br>SIF1 receive data D4 |             |              |    |     |                       |
|         |     | RXD14          | SIF1 receive data D4<br>SIF1 receive data D3 | High        | Low          | Х  | R   |                       |
|         |     | RXD13          | SIF1 receive data D5<br>SIF1 receive data D2 |             |              |    |     |                       |
|         |     | RXD12          | SIF1 receive data D2<br>SIF1 receive data D1 |             |              |    |     |                       |
|         |     |                |                                              |             |              |    |     |                       |
|         | טט  | RXD10          | SIF1 receive data D0 (LSB)                   |             |              |    |     |                       |

Table 11.9.1(b) Serial interface control bits

#### *ESIF0: 00FF48H•D0 ESIF1: 00FF4CH•D0*

Configures the serial interface terminals.

When "1" is written:Serial input/output terminalWhen "0" is written:I/O port terminalReading:Valid

The ESIFx is the serial interface enable register and P10–P13 (P14–P17) terminals become serial input/ output terminals (SINx, SOUTx, SCLKx, SRDYx) when "1" is written, and they become I/O port terminals when "0" is written. Also, see Table 11.3.2 for the terminal settings according to the transfer modes.

At initial reset, ESIFx is set to "0" (I/O port).

#### *SMD00, SMD01: 00FF48H•D1, D2 SMD10, SMD11: 00FF4CH•D1, D2*

Set the transfer modes according to Table 11.9.2.

| Table 11.9.2 | Transfer | mode | settings |
|--------------|----------|------|----------|
|--------------|----------|------|----------|

| SMDx1 | SMDx0 | Mode                     |
|-------|-------|--------------------------|
| 1     | 1     | Asynchronous 8-bit       |
| 1     | 0     | Asynchronous 7-bit       |
| 0     | 1     | Clock synchronous slave  |
| 0     | 0     | Clock synchronous master |

SMDx0 and SMDx1 can also read out. At initial reset, this register is set to "0" (clock synchronous master mode).

#### SCS00, SCS01: 00FF48H•D3, D4 SCS10, SCS11: 00FF4CH•D3, D4

Select the clock source according to Table 11.9.3.

| Table 11.9.3 | Clock source selection |
|--------------|------------------------|
|--------------|------------------------|

| SCSx1 | SCSx0 | Clock source                 |
|-------|-------|------------------------------|
| 1     | 1     | Programmable timer 1 (Ch. 0) |
|       |       | Programmable timer 7 (Ch. 1) |
| 1     | 0     | fosc3 / 4                    |
| 0     | 1     | fosc3 / 8                    |
| 0     | 0     | fosc3 / 16                   |

SCSx0 and SCSx1 can also be read out.

In the clock synchronous slave mode, setting of this register is invalid.

At initial reset, this register is set to "0" (fosc<sub>3</sub>/16).

#### *PMD0: 00FF48H•D5 PMD1: 00FF4CH•D5*

Selects odd parity/even parity.

| When "1" is written: | Odd parity  |
|----------------------|-------------|
| When "0" is written: | Even parity |
| Reading:             | Valid       |

When "1" is written to PMDx, odd parity is selected and even parity is selected when "0" is written. The parity check and addition of a parity bit is only valid when "1" has been written to EPRx. When "0" has been written to EPRx, the parity setting by PMDx becomes invalid.

At initial reset, PMDx is set to "0" (even parity).

#### *EPR0: 00FF48H•D6 EPR1: 00FF4CH•D6*

Selects the parity function.

When "1" is written:With parityWhen "0" is written:Non parityReading:Valid

Selects whether or not to check parity of the received data and to add a parity bit to the transmitting data. When "1" is written to EPRx, the most significant bit of the received data is considered to be the parity bit and a parity check is executed. A parity bit is added to the transmitting data. When "0" is written, neither checking is done nor is a parity bit added.

Parity is valid only in asynchronous mode and the EPRx setting becomes invalid in the clock synchronous mode.

At initial reset, EPRx is set to "0" (non parity).

#### *STPB0: 00FF48H•D7 STPB1: 00FF4CH•D7*

Selects the stop bit length for asynchronous data transfer.

| When "1" is written: | 2 bits |
|----------------------|--------|
| When "0" is written: | 1 bit  |
| Reading:             | Valid  |

STPBx is the stop bit select register that is effective in asynchronous mode. When "1" is written to STPBx, the stop bit length is set to 2 bits, and when "0" is written, it is set to 1 bit.

In clock synchronous mode, no start/stop bits can be added to transfer data. Therefore, setting STPBx becomes invalid.

At initial reset, STPBx is set to "0" (1 bit).

#### *TXEN0: 00FF49H•D0 TXEN1: 00FF4DH•D0*

Sets the serial interface to the transmitting enable status.

| When "1" is written: | Transmitting enable  |
|----------------------|----------------------|
| When "0" is written: | Transmitting disable |
| Reading:             | Valid                |

When "1" is written to TXENx, the serial interface shifts to the transmitting enable status and shifts to the transmitting disable status when "0" is written. Set TXENx to "0" when making the initial settings of the serial interface and similar operations. At initial reset, TXENx is set to "0" (transmitting disable).

#### *TXTRG0: 00FF49H•D1 TXTRG1: 00FF4DH•D1*

Functions as the transmitting start trigger and the operation status indicator (transmitting/stop status).

| When "1" is read:                            | During transmitting |
|----------------------------------------------|---------------------|
| When "0" is read:                            | During stop         |
| When "1" is written:<br>When "0" is written: | 0                   |

Starts the transmitting when "1" is written to TXTRGx after writing the transmitting data. TXTRGx can be read as the status. When set to "1", it indicates transmitting operation, and "0" indicates transmitting stop.

At initial reset, TXTRGx is set to "0" (during stop).

#### *RXEN0: 00FF49H•D2 RXEN1: 00FF4DH•D2*

Sets the serial interface to the receiving enable status.

When "1" is written:Receiving enableWhen "0" is written:Receiving disableReading:Valid

When "1" is written to RXENx, the serial interface shifts to the receiving enable status and shifts to the receiving disable status when "0" is written. Set RXENx to "0" when making the initial settings of the serial interface and similar operations. At initial reset, RXENx is set to "0" (receiving disable).

#### *RXTRG0: 00FF49H•D3 RXTRG1: 00FF4DH•D3*

Functions as the receiving start trigger or preparation for the following data receiving and the operation status indicator (during receiving/during stop).

| When "1" is read:<br>When "0" is read: | During receiving<br>During stop       |
|----------------------------------------|---------------------------------------|
| When "1" is written:                   | Receiving start/following             |
| When "0" is written:                   | data receiving preparation<br>Invalid |

RXTRGx has a slightly different operation in the clock synchronous system and the asynchronous system.

The RXTRGx in the clock synchronous system, is used as the trigger for the receiving start. Writes "1" into RXTRGx to start receiving at the point where the receive data has been read and the following receive preparation has been done. (In the slave mode, SRDYx becomes "0" at the point where "1" has been written into the RXTRGx.)

RXTRGx is used in the asynchronous system for preparation of the following data receiving. Reads the received data located in the received data buffer and writes "1" into RXTRGx to inform that the received data buffer has shifted to empty. When "1" has not been written to RXTRGx, the overrun error flag OERx is set to "1" at the point where the following receiving has been completed. (When the receiving has been completed between the operation to read the received data and the operation to write "1" into RXTRGx, an overrun error occurs.)

In addition, RXTRGx can be read as the status. In either clock synchronous mode or asynchronous mode, when RXTRGx is set to "1", it indicates receiving operation and when set to "0", it indicates that receiving has stopped.

At initial reset, RXTRGx is set to "0" (during stop).

#### *OER0: 00FF49H•D4 OER1: 00FF4DH•D4*

Indicates the generation of an overrun error.

| When "1" is read:                            | Error    |
|----------------------------------------------|----------|
| When "0" is read:                            | No error |
| When "1" is written:<br>When "0" is written: |          |

OERx is an error flag that indicates the generation of an overrun error and becomes "1" when an error has been generated.

An overrun error is generated when the receiving of data has been completed prior to the writing of "1" to RXTRGx in the asynchronous mode.

OERx is reset to "0" by writing "1".

At initial reset and when RXENx is "0", OERx is set to "0" (no error).

#### *PER0: 00FF49H•D5 PER1: 00FF4DH•D5*

Indicates the generation of a parity error.

| When "1" is read:                            | Error    |
|----------------------------------------------|----------|
| When "0" is read:                            | No error |
| When "1" is written:<br>When "0" is written: |          |

PERx is an error flag that indicates the generation of a parity error and becomes "1" when an error has been generated.

When a parity check is performed in the asynchronous mode, if data that does not match the parity is received, a parity error is generated.

PERx is reset to "0" by writing "1".

At initial reset and when RXENx is "0", PERx is set to "0" (no error).

#### *FER0: 00FF49H•D6 FER1: 00FF4DH•D6*

Indicates the generation of a framing error.

| When "1" is read:                            | Error    |
|----------------------------------------------|----------|
| When "0" is read:                            | No error |
| When "1" is written:<br>When "0" is written: |          |

FERx is an error flag that indicates the generation of a framing error and becomes "1" when an error has been generated.

When the stop bit for the receiving of the asynchronous mode has become "0", a framing error is generated.

FERx is reset to "0" by writing "1".

At initial reset and when RXENx is "0", FERx is set to "0" (no error).

#### *SDP0: 00FF49H•D7 SDP1: 00FF4DH•D7*

Selects the serial data input/output permutation.

When "1" is written:MSB firstWhen "0" is written:LSB firstReading:Valid

Select whether the data input/output permutation will be MSB first or LSB first. At initial reset, SDPx is set to "0" (LSB first).

#### TXD00–TXD07: 00FF4AH TXD10–TXD17: 00FF4EH

Write the transmitting data into the transmit shift register.

When "1" is written: HIGH level When "0" is written: LOW level

Write the transmitting data prior to starting transmitting.

In the case of continuous transmitting, wait for the transmitting complete interrupt, then write the data. The TXDx7 becomes invalid for the asynchronous 7-bit mode.

Converted serial data for which the bits set at "1" as HIGH (VDD) level and for which the bits set at "0" as LOW (Vss) level are output from the SOUTx terminal.

At initial reset, transmitting data is undefined.

#### *RXD00–RXD07: 00FF4BH RXD10–RXD17: 00FF4FH*

The received data can be read out.

| When "1" is read: | HIGH level |
|-------------------|------------|
| When "0" is read: | LOW level  |

The data from the received data buffer can be read out. Since the sift register is provided separately from this buffer, reading can be done during the receive operation in the asynchronous mode. (The buffer function is not used in the clock synchronous mode.) Read the data after waiting for the receiving complete interrupt.

When performing parity check in the asynchronous 7-bit mode, "0" is loaded into the 8th bit (RXDx7) that corresponds to the parity bit.

The serial data input from the SINx terminal is level converted, making the HIGH (VDD) level bit "1" and the LOW (VSS) level bit "0" and is then loaded into this buffer.

At initial reset, the buffer content is undefined.

### 11.10 Precautions

- (1) Be sure to initialize the serial interface mode in the transmitting/receiving disable status (TXENx = RXENx = "0").
- (2) Do not perform double trigger (writing "1") to TXTRGx (RXTRGx) when the serial interface is in the transmitting (receiving) operation. Furthermore, do not execute the SLP instruction. (When executing the SLP instruction, set TXENx = RXENx = "0".)
- (3) In the clock synchronous mode, since one clock line (SCLKx) is shared for both transmitting and receiving, transmitting and receiving cannot be performed simultaneously. (Half duplex only is possible in clock synchronous mode.) Consequently, be sure not to write "1" to RXTRGx (TXTRGx) when TXTRGx (RXTRGx) is "1".
- (4) When a parity error or framing error is generated during receiving in the asynchronous mode, the receiving error interrupt factor flag FSERRx is set to "1" prior to the receiving complete interrupt factor flag FSRECx for the time indicated in Table 11.10.1. Consequently, when an error is generated, you should reset the receiving complete interrupt factor flag FSRECx to "0" by providing a wait time in error processing routines and similar routines. When an overrun error is generated, the receiving complete interrupt factor flag FSRECx is not set to "1" and a receiving complete interrupt is not generated.

 Table 11.10.1
 Time difference between FSERRx

 and FSRECx on error generation

| Clock source Time difference |                            |  |  |
|------------------------------|----------------------------|--|--|
| fosc3 / n                    | 1/2 cycles of fosc3 / n    |  |  |
| Programmable timer           | 1 cycle of timer underflow |  |  |

(5) When the demultiplied signal of the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the serial interface.

A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before starting transmitting/receiving of serial interface. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 19, "Electrical Characteristics".) At initial reset, the OSC3 oscillation circuit is set to ON status.

# **12 CLOCK TIMER**

## 12.1 Configuration of Clock Timer

The S1C88655 has built in a clock timer that uses the OSC1 oscillation circuit as clock source. The clock timer is composed of an 8-bit binary counter that uses the 256 Hz signal (when fOSC1 = 32.768 kHz) dividing fOSC1 as its input clock and can read the data of each bit (128–1 Hz) by software. Normally, this clock timer is used for various timing functions such as clocks. The configuration of the clock timer is shown in Figure 12.1.1.

Note: The frequency values described in this chapter assumes that the OSC1 oscillation frequency (fosc1) is 32.768 kHz. If fosc1 is not 32.768 kHz, this timer cannot be used for clocking.

## 12.2 Interrupt Function

The clock timer can generate an interrupt by each of the 32 Hz, 8 Hz, 2 Hz and 1 Hz signals. The configuration of the clock timer interrupt circuit is shown in Figure 12.2.1.

Interrupts are generated by respectively setting the corresponding interrupt factor flags FTM32, FTM8, FTM2 and FTM1 at the falling edge of the 32 Hz, 8 Hz, 2 Hz and 1 Hz signals to "1". Interrupt can be prohibited by the setting the interrupt enable registers ETM32, ETM8, ETM2 and ETM1 corresponding to each interrupt factor flag. In addition, a priority level of the clock timer interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PTM0 and PTM1.

For details on the above mentioned interrupt control register and the operation following generation of an interrupt, see Chapter 7, "Interrupt and Standby Status".

The exception processing vector addresses for each interrupt factor are respectively set as shown below.

 32 Hz interrupt: 000032H

 8 Hz interrupt: 000034H

 2 Hz interrupt: 000036H

 1 Hz interrupt: 000038H

Figure 12.2.2 shows the timing chart for the clock timer.

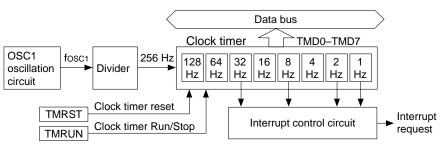
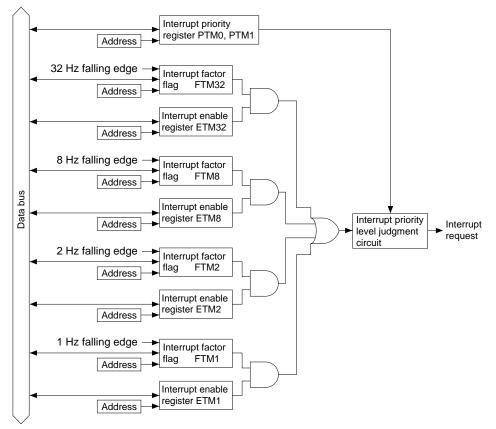
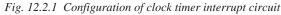
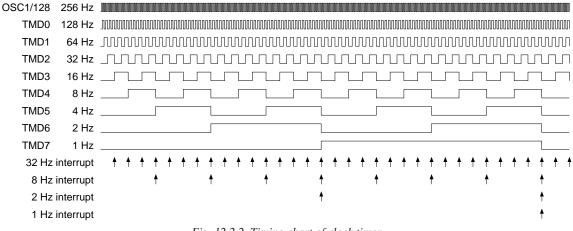
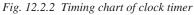







Fig. 12.1.1 Configuration of clock timer









## 12.3 Details of Control Registers

Table 12.3.1 shows the clock timer control bits.

| Tahle 1        | 231   | Clock | timer | control | hits |
|----------------|-------|-------|-------|---------|------|
| <i>uvie</i> 14 | 2.3.1 | CIUCK | umer  | control | Dus  |

|         |     |       |                              |       |              |    |     | -                   |
|---------|-----|-------|------------------------------|-------|--------------|----|-----|---------------------|
| Address | Bit | Name  | Function                     | 1     | 0            | SR | R/W | Comment             |
| 00FF40  | D7  | -     | _                            | -     | -            | 0  | R   | Constantly "0" when |
|         | D6  | -     | _                            | -     | -            | 0  | R   | being read          |
|         | D5  | -     | _                            | -     | -            | 0  | R   |                     |
|         | D4  | -     | _                            | -     | -            | 0  | R   |                     |
|         | D3  | -     | _                            | -     | -            | 0  | R   |                     |
|         | D2  | -     | _                            | -     | -            | 0  | R   |                     |
|         | D1  | TMRST | Clock timer reset            | Reset | No operation | -  | W   |                     |
|         | D0  | TMRUN | Clock timer Run/Stop control | Run   | Stop         | 0  | R/W |                     |
| 00FF41  | D7  | TMD7  | Clock timer data 1 Hz        |       |              |    |     |                     |
|         | D6  | TMD6  | Clock timer data 2 Hz        |       |              |    |     |                     |
|         | D5  | TMD5  | Clock timer data 4 Hz        |       |              |    |     |                     |
|         | D4  | TMD4  | Clock timer data 8 Hz        | High  | Low          | 0  | R   |                     |
|         | D3  | TMD3  | Clock timer data 16 Hz       | rigii | Low          | 0  | ĸ   |                     |
|         | D2  | TMD2  | Clock timer data 32 Hz       |       |              |    |     |                     |
|         | D1  | TMD1  | Clock timer data 64 Hz       |       |              |    |     |                     |
|         | D0  | TMD0  | Clock timer data 128 Hz      |       |              |    |     |                     |

#### *TMD0–TMD7: 00FF41H*

The clock timer data can be read out. Each bit of TMD0–TMD7 and frequency correspondence are as follows:

| TMD0: | 128 Hz | TMD4: | 8 Hz  |
|-------|--------|-------|-------|
| TMD1: | 64 Hz  | TMD5: | 4  Hz |
| TMD2: | 32 Hz  | TMD6: | 2 Hz  |
| TMD3: | 16 Hz  | TMD7: | 1 Hz  |

Since the TMD0–TMD7 is exclusively for reading, the write operation is invalid. At initial reset, the timer data is set to "00H".

#### TMRST: 00FF40H•D1

Resets the clock timer.

When "1" is written:Clock timer resetWhen "0" is written:No operationReading:Always "0"

The clock timer is reset by writing "1" to the TMRST.

When the clock timer is reset in the RUN status, it restarts immediately after resetting. In the case of the STOP status, the reset data "00H" is maintained. No operation results when "0" is written to the TMRST.

Since the TMRST is exclusively for writing, it always becomes "0" during reading.

#### TMRUN: 00FF40H•D0

Controls RUN/STOP of the clock timer.

When "1" is written: RUN When "0" is written: STOP Reading: Valid

The clock timer starts up-counting by writing "1" to the TMRUN and stops by writing "0". In the STOP status, the count data is maintained until it is reset or set in the next RUN status. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count.

At initial reset, the TMRUN is set to "0" (STOP).

### 12.4 Precautions

(1) The clock timer is actually made to RUN/STOP in synchronization with the falling edge of the 256 Hz signal after writing to the TMRUN register. Consequently, when "0" is written to the TMRUN, the timer shifts to STOP status when the counter is incremented "1". The TMRUN maintains "1" for reading until the timer actually shifts to STOP status. Figure 12.4.1 shows the timing chart of the RUN/STOP control.

| 256 Hz    |     |                             |     |
|-----------|-----|-----------------------------|-----|
| TMRUN(RD) |     |                             |     |
| TMRUN(WR) |     |                             |     |
|           |     |                             |     |
| TMDx      | 57H | <u>(58H)(59H)(5AH)(5BH)</u> | 5CH |
|           |     |                             | _   |

Fig. 12.4.1 Timing chart of RUN/STOP control

(2) The SLP instruction is executed when the clock timer is in the RUN status (TMRUN = "1"). The clock timer operation will become unstable when returning from SLEEP status. Therefore, when shifting to SLEEP status, set the clock timer to STOP status (TMRUN = "0") prior to executing the SLP instruction.

# 13 PROGRAMMABLE TIMER

## 13.1 Configuration of Programmable Timer

The S1C88655 has four built-in 16-bit programmable timer systems. Each system timer consists of a 16-bit presettable down counter, and can be used as 16-bit  $\times$  1 channel or 8-bit  $\times$  2 channels of programmable timer. Furthermore, they function as event counters using the input port terminal. Figures 13.1.1 and 13.1.2 show the configuration of the 16-bit programmable timers.

Two 8-bit down counters, the reload data register and compare data register corresponding to each down counter are arranged in the 16-bit programmable timer. The reload data register is used to set an initial value to the down counter.

The compare data register stores data for comparison with the content of the down counter.

By setting these registers, a PWM waveform is generated and it can be output to external devices as the TOUT0, 1, 2 or 3 signal. Furthermore, the serial interface clock is generated from the underflow signal of Timer 1 for serial interface Ch. 0 or Timer 7 for Ch. 1. The Timer 5 underflow signal can be used to set the source clock for the display timing generator.

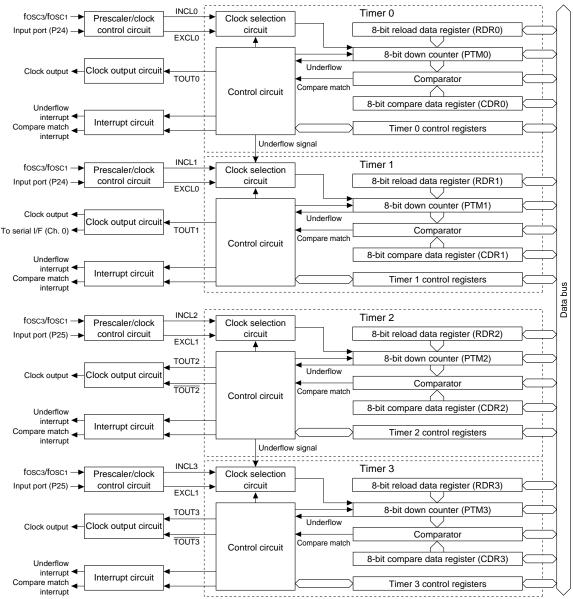



Fig. 13.1.1 Configuration of 16-bit programmable timer (Timers 1–3)

#### **13 PROGRAMMABLE TIMER**

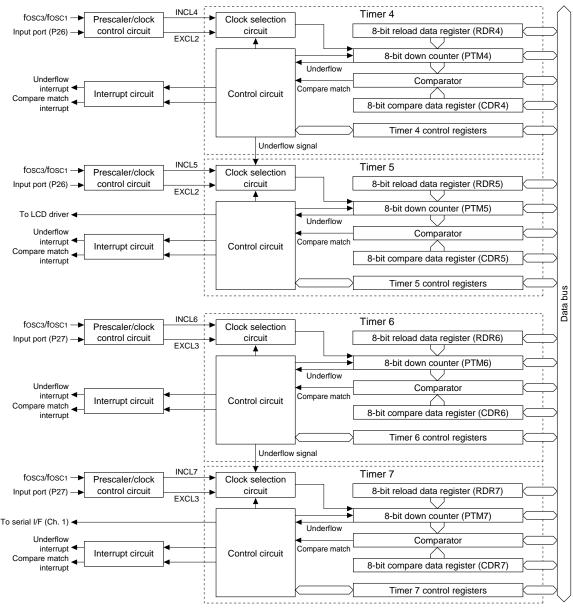



Fig. 13.1.2 Configuration of 16-bit programmable timer (Timers 4–7)

## 13.2 Operation Mode

Timers 0 and 1, Timers 2 and 3, Timers 4 and 5, or Timers 6 and 7 can be used as two channels of 8-bit timers or one channel of 16-bit timer. Two kinds of operation modes are provided corresponding to this configuration, and it can be selected by the 8/16-bit mode selection registers MODE16\_A (for Timer 0–1) through MODE16\_D (for Timer 6–7). When "0" is set to the MODE16\_A register, Timers 0 and 1 enter the 8-bit mode (8-bit × 2 channels) and when "1" is set, they enter the 16-bit mode (16-bit × 1 channel).

In the 8-bit mode, Timers 0 and 1 can be controlled individually.

In the 16-bit mode, the underflow signal of Timer 0 is used as the input clock of Timer 1 so that the down counters operate as a 16-bit counter. The timer in the 16-bit mode is controlled with the control registers for Timer 0 except for the clock output.

MODE16\_B through MODE16\_D have the same function.

Figure 13.2.1 shows the timer configuration depending on the operation mode and Table 13.2.1 shows the configuration of the control registers.

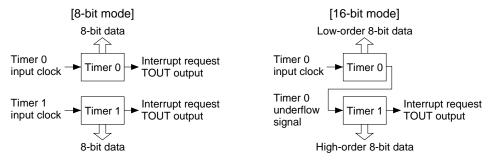



Fig. 13.2.1 Counter configuration in 8- and 16-bit mode (example of Timers 0 and 1)

| Address | Bit | Name     | Function                                  | 1              | 0              | SR | R/W   | Comment             |
|---------|-----|----------|-------------------------------------------|----------------|----------------|----|-------|---------------------|
| 00FF30  | D7  | MODE16_A | PTM0-1 8/16-bit mode selection            | 16-bit x 1     | 8-bit x 2      | 0  | 0 R/W |                     |
|         | D6  | PTNREN_A | External clock 0 noise rejector selection | Enable         | Disable        | 0  | R/W   |                     |
|         | D5  | -        | _                                         | -              | -              | 0  | R     | "0" when being read |
|         | D4  | -        | R/W register                              | 1              | 0              | 0  | R/W   | Reserved register   |
|         | D3  | PTOUT0   | PTM0 clock output control                 | On             | Off            | 0  | R/W   |                     |
|         | D2  | PTRUN0   | PTM0 Run/Stop control                     | Run            | Stop           | 0  | R/W   |                     |
|         | D1  | PSET0    | PTM0 preset                               | Preset         | No operation   | 0  | W     | "0" when being read |
|         | D0  | CKSEL0   | PTM0 input clock selection                | External clock | Internal clock | 0  | R/W   |                     |
| 00FF31  | D7  | -        | _                                         | -              | -              | 0  | R     | Constantly "0" when |
|         | D6  | -        | _                                         | -              | -              | 0  | R     | being read          |
|         | D5  | -        | _                                         | -              | -              | 0  | R     |                     |
|         | D4  | _        | R/W register                              | 1              | 0              | 0  | R/W   | Reserved register   |
|         | D3  | PTOUT1   | PTM1 clock output control                 | On             | Off            | 0  | R/W   |                     |
|         | D2  | PTRUN1   | PTM1 Run/Stop control                     | Run            | Stop           | 0  | R/W   |                     |
|         | D1  | PSET1    | PTM1 preset                               | Preset         | No operation   | 0  | W     | "0" when being read |
|         | D0  | CKSEL1   | PTM1 input clock selection                | External clock | Internal clock | 0  | R/W   |                     |

Table 13.2.1(a) Control registers in 8-bit mode (example of Timers 0 and 1)

Table 13.2.1(b) Control registers in 16-bit mode (example of Timers 0 and 1)

| Address | Bit | Name     | Function                                  | 1              | 0              | SR | R/W | Comment             |
|---------|-----|----------|-------------------------------------------|----------------|----------------|----|-----|---------------------|
| 00FF30  | D7  | MODE16_A | PTM0-1 8/16-bit mode selection            | 16-bit x 1     | 8-bit x 2      | 0  | R/W |                     |
|         | D6  | PTNREN_A | External clock 0 noise rejector selection | Enable         | Disable        | 0  | R/W |                     |
|         | D5  | -        | _                                         | -              | -              | 0  | R   | "0" when being read |
|         | D4  | _        | Invalid (fixed at "0")                    | Invalid        | Fixed at "0"   | 0  | R/W | Reserved register   |
|         | D3  | PTOUT0   | Invalid (fixed at "0")                    | Invalid        | Fixed at "0"   | 0  | R/W |                     |
|         | D2  | PTRUN0   | PTM0 Run/Stop control                     | Run            | Stop           | 0  | R/W |                     |
|         | D1  | PSET0    | PTM0 preset                               | Preset         | No operation   | 0  | W   | "0" when being read |
|         | D0  | CKSEL0   | PTM0 input clock selection                | External clock | Internal clock | 0  | R/W |                     |
| 00FF31  | D7  | -        | _                                         | -              | -              | 0  | R   | Constantly "0" when |
|         | D6  | _        | _                                         | -              | -              | 0  | R   | being read          |
|         | D5  | _        | _                                         | -              | -              | 0  | R   |                     |
|         | D4  | _        | R/W register                              | 1              | 0              | 0  | R/W | Reserved register   |
|         | D3  | PTOUT1   | PTM1 clock output control                 | On             | Off            | 0  | R/W |                     |
|         | D2  | PTRUN1   | Invalid (fixed at "0")                    | Invalid        | Fixed at "0"   | 0  | R/W |                     |
|         | D1  | PSET1    | Invalid (fixed at "0")                    | Invalid        | Fixed at "0"   | 0  | W   | "0" when being read |
|         | D0  | CKSEL1   | Invalid (fixed at "0")                    | Invalid        | Fixed at "0"   | 0  | R/W |                     |

Note: The register names contain a timer number (0–7) to identify the timer to which the register belongs. The following explanation uses "x" instead of the timer number except when it is required. For example, PTRUNx represents PTRUN0 through PTRUN7. Furthermore, a pair of timers are described as Timer(L) and Timer(H) in explanations for 16-bit mode. Timer(L) = Timer 0, Timer 2, Timer 4 or Timer 6 Timer(H) = Timer 1, Timer 3, Timer 5 or Timer 7

This is used for register names.

## 13.3 Setting of Input Clock

register and input clock of each timer.

The clock to be input to the counter can be selected from either the internal clock or external clock by the input clock selection register (CKSEL) provided for each timer. The internal clock is an output of the prescaler. The external clock is used for the event counter function. A signal from the I/ O port is used as the count clock. Table 13.3.1 shows the input clock selection

| Table 15.5.1 Input clock selection |                  |                   |  |  |  |  |
|------------------------------------|------------------|-------------------|--|--|--|--|
| Timer                              | Register setting | Input clock       |  |  |  |  |
| Timer 0                            | CKSEL0 = "0"     | INCL0 (Prescaler) |  |  |  |  |
|                                    | CKSEL0 = "1"     | EXCL0 (P24 input) |  |  |  |  |
| Timer 1                            | CKSEL1 = "0"     | INCL1 (Prescaler) |  |  |  |  |
|                                    | CKSEL1 = "1"     | EXCL0 (P24 input) |  |  |  |  |
| Timer 2                            | CKSEL2 = "0"     | INCL2 (Prescaler) |  |  |  |  |
|                                    | CKSEL2 = "1"     | EXCL1 (P25 input) |  |  |  |  |
| Timer 3                            | CKSEL3 = "0"     | INCL3 (Prescaler) |  |  |  |  |
|                                    | CKSEL3 = "1"     | EXCL1 (P25 input) |  |  |  |  |
| Timer 4                            | CKSEL4 = "0"     | INCL4 (Prescaler) |  |  |  |  |
|                                    | CKSEL4 = "1"     | EXCL2 (P26 input) |  |  |  |  |
| Timer 5                            | CKSEL5 = "0"     | INCL5 (Prescaler) |  |  |  |  |
|                                    | CKSEL5 = "1"     | EXCL2 (P26 input) |  |  |  |  |
| Timer 6                            | CKSEL6 = "0"     | INCL6 (Prescaler) |  |  |  |  |
|                                    | CKSEL6 = "1"     | EXCL3 (P27 input) |  |  |  |  |
| Timer 7                            | CKSEL7 = "0"     | INCL7 (Prescaler) |  |  |  |  |
|                                    | CKSEL7 = "1"     | EXCL3 (P27 input) |  |  |  |  |

Table 13.3.1 Input clock selection

When the external clock is selected, a signal from the I/O port is input to the programmable timer. An noise rejector is incorporated in the external clock input circuit and it can be enabled/disabled using the external clock noise rejector select registers PTNREN\_A through PTNREN\_D corresponding to the EXCL0 through EXCL3 inputs. Writing "1" to PTNREN\_A (–D) enables the noise rejector for the external clock EXCL0 (–3). The noise rejector regards pulses less than a 16/fosc1 seconds in width as noise and rejects them. The external clock must have a pulse width at least double the rejected width.

Note: An external clock cannot be input when the OSC1 oscillation circuit is OFF. When using the noise rejector, be sure to turn the OSC1 oscillation circuit ON.

When PTNREN\_A (–D) is "0", the external clock bypasses the noise rejector.

When the internal clock is used, select a source clock and a division ratio of the prescaler to set the clock frequency for each timer.

The source clock is specified using the source clock selection register PRTFx provided for each timer. When "1" is written to PRTFx, the OSC1 clock is selected as the source clock for Timer x. When "0" is written, the OSC3 clock is selected. The OSC3 oscillation circuit must be on before the OSC3 can be used. See Chapter 8, "Oscillation Circuits" for the controlling of the OSC3 oscillation circuit.

The prescaler provides the division ratio selection register PSTx0–PSTx2 for each timer. Note that the division ratio varies depending on the selected source clock.

| Register |       |       | Dividing ratio |           |  |
|----------|-------|-------|----------------|-----------|--|
| PSTx2    | PSTx1 | PSTx0 | (OSC3)         | (OSC1)    |  |
| 1        | 1     | 1     | fosc3/4096     | fosc1/128 |  |
| 1        | 1     | 0     | fosc3/1024     | fosc1/64  |  |
| 1        | 0     | 1     | fosc3/256      | fosc1/32  |  |
| 1        | 0     | 0     | fosc3/64       | fosci/16  |  |
| 0        | 1     | 1     | fosc3/32       | fosc1/8   |  |
| 0        | 1     | 0     | fosc3/8        | fosc1/4   |  |
| 0        | 0     | 1     | fosc3/2        | fosc1/2   |  |
| 0        | 0     | 0     | fosc3/1        | fosc1/1   |  |

Table 13.3.2 Division ratio and control registers

The set clock is output to Timer x by writing "1" to the clock control register PRPRTx.

When the 16-bit mode is selected, the programmable timer operates with the clock input to Timer(L), and Timer(H) inputs the Timer(L) underflow signal as the clock. Therefore, the setting of Timer(H) input clock is invalid.

## 13.4 Operation and Control of Timer

## Reload data register and setting of initial value

The reload data register (RDRx) is used to set an initial value of the down counter.

In the 8-bit mode, RDRx is used as an 8-bit register separated for each timer.

In the 16-bit mode, the RDR(L) register is handled as low-order 8 bits of reload data, and the RDR(H) register is as high-order 8 bits.

The reload data register can be read and written, and all the registers are set to FFH at initial reset.

Data written in this register is loaded into the down counter, and a down counting starts from the value. The down counter is preset, in the following two cases:

1) When software presets

The software preset can be done using the preset control bits PSETx corresponding to Timer x. When the preset control bit is set to "1", the content of the reload data register is loaded into the down counter at that point. In the 16-bit mode, a 16-bit reload data is loaded all at one time by setting PSET(L). In this case, writing to PSET(H) is invalid.

2) When down counter has underflowed during a count Since the down counter presets the reload data by the underflow, the underflow period is decided according to the value set in the reload data register. This underflow generates an interrupt, and controls the clock (TOUTx signal) output.

#### Compare data register

The programmable timer has a built-in data comparator so that count data can be compared with an optional value. The compare data register (CDRx) is used to set the value to be compared. In the 8-bit mode, CDRx is used as an 8-bit register separated for each timer.

In the 16-bit mode, the CDR(L) register is handled as low-order 8 bits of compare data, and the CDR(H) register is as high-order 8 bits.

The compare data register can be read and written, and all the registers are set to 00H at initial reset.

The programmable timer compares count data with the compare data register (CDRx), and generates a compare match signal when they become the same value. This compare match signal generates an interrupt, and controls the clock (TOUTx signal) output.

#### **Timer operation**

Timer is equipped with PTRUNx register which controls the RUN/STOP of the timer. Timer x starts down counting by writing "1" to the PTRUNx register. However, it is necessary to control the input clock and to preset the reload data before starting a count. When "0" is written to PTRUNx register, clock input is prohibited, and the count stops. This RUN/STOP control does not affect data in the counter. The data in the counter is maintained during count deactivation, so it is possible to resume counting from the data.

In the 8-bit mode, the timers can be controlled individually by the PTRUNx register. In the 16-bit mode, the PTRUN(L) register controls a pair of timers as a 16-bit timer. In this case, control of the PTRUN(H) register is invalid.

The buffers PTMx is attached to the counter, and reading is possible in optional timing.

When the counter agrees with the data set in the compare data register during down counting, the timer generates a compare match interrupt. And, when the counter underflows, an underflow interrupt is generated, and the initial value set in the reload data register is loaded to the counter. The interrupt generated does not stop the down counting.

After an underflow interrupt is generated, the counter continues counting from the initial value reloaded.

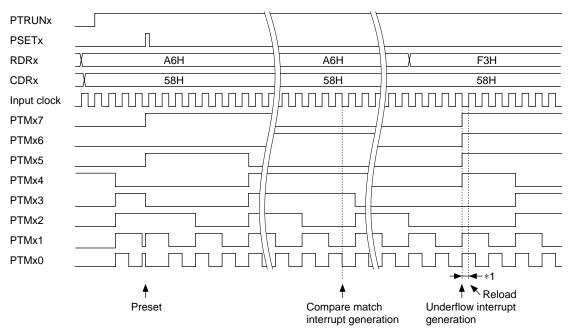



Fig. 13.4.1 Basic operation timing of counter (an example of 8-bit mode)

Note: The programmable timer counts down at the falling edge of the input clock and at the same time it generates an interrupt if the counter underflows. Then it starts loading the reload data to the counter and the counter data is determined at the next rising edge of the input clock (period shown in as \*1 in the figure).

To avoid improper reloading, do not rewrite the reload data after an interrupt occurs until the counter data is determined including the reloading period \*1. Be especially careful when using the OSC1 (low-speed clock) as the clock source of the programmable timer and the CPU is operating with the OSC3 (high-speed clock).

### 13.5 Interrupt Function

The 16-bit programmable timer can generate an interrupt with the compare match signal and underflow signal of each timer. Figure 13.5.1 shows the configuration of the 16-bit programmable timer interrupt circuit.

The compare match signal and underflow signal of each timer set the corresponding interrupt factor flag to "1". At that point, the interrupt is generated. The interrupt can also be prohibited by setting the interrupt enable register to correspond with the interrupt factor flag.

Furthermore, the priority level of the interrupt for the CPU can be set to an optional level (0-3) using the interrupt priority register.

Table 13.5.1 shows the interrupt factor flags, interrupt enable registers and interrupt priority registers corresponding to the interrupt factors.

In the 8-bit mode, the compare match interrupt factor flag and underflow interrupt factor flag are individually set to "1" by the timers.

In the 16-bit mode, the interrupt factor flags of Timer(H) are set to "1" by the compare match and underflow in 16 bits.

Refer to Chapter 7, "Interrupt and Standby Status", for details of the interrupt control registers and operations subsequent to interrupt generation.

The exception processing vector addresses for the 16bit programmable timer interrupt are set as follows:

| Timer 0 compare match interrupt: | 000024H |
|----------------------------------|---------|
| Timer 0 underflow interrupt:     | 000022H |
| Timer 1 underflow interrupt:     | 000020H |
| Timer 1 compare match interrupt: | 00001EH |
| Timer 2 underflow interrupt:     | 00001CH |
| Timer 2 compare match interrupt: | 00001AH |
| Timer 3 underflow interrupt:     | 000018H |
| Timer 3 compare match interrupt: | 000016H |
| Timer 4 underflow interrupt:     | 000048H |
| Timer 4 compare match interrupt: | 000046H |
| Timer 5 underflow interrupt:     | 000044H |
| Timer 5 compare match interrupt: | 000042H |
| Timer 6 underflow interrupt:     | 000040H |
| Timer 6 compare match interrupt: | 00003EH |
| Timer 7 underflow interrupt:     | 00003CH |
| Timer 7 compare match interrupt: | 00003AH |

| Let.    | ha mu mat fa ata n | Interrup | ot factor flag | Interrupt e | enable register | Interrupt priority register |            |  |
|---------|--------------------|----------|----------------|-------------|-----------------|-----------------------------|------------|--|
| In      | terrupt factor     | Name     | Address-Dx     | Name        | Address.Dx      | Name                        | Address-Dx |  |
| Timer 0 | Compare match      | FTC0     | 00FF1BH·D0     | ETC0        | 00FF15H·D0      | PPT0                        | 00FF10H·D2 |  |
|         | Counter underflow  | FTU0     | 00FF1BH·D1     | ETU0        | 00FF15H·D1      | PPT1                        | 00FF10H·D3 |  |
| Timer 1 | Counter underflow  | FTU1     | 00FF1BH·D2     | ETU1        | 00FF15H·D2      | ]                           |            |  |
|         | Compare match      | FTC1     | 00FF1BH·D3     | ETC1        | 00FF15H·D3      |                             |            |  |
| Timer 2 | Counter underflow  | FTU2     | 00FF1BH·D4     | ETU2        | 00FF15H·D4      | PPT2                        | 00FF10H·D4 |  |
|         | Compare match      | FTC2     | 00FF1BH·D5     | ETC2        | 00FF15H·D5      | PPT3                        | 00FF10H·D5 |  |
| Timer 3 | Counter underflow  | FTU3     | 00FF1BH·D6     | ETU3        | 00FF15H·D6      |                             |            |  |
|         | Compare match      | FTC3     | 00FF1BH·D7     | ETC3        | 00FF15H·D7      | ]                           |            |  |
| Timer 4 | Counter underflow  | FTU4     | 00FF1EH·D0     | ETU4        | 00FF18H·D0      | PPT4                        | 00FF11H·D4 |  |
|         | Compare match      | FTC4     | 00FF1EH·D1     | ETC4        | 00FF18H·D1      | PPT5                        | 00FF11H·D5 |  |
| Timer 5 | Counter underflow  | FTU5     | 00FF1EH·D2     | ETU5        | 00FF18H·D2      | ]                           |            |  |
|         | Compare match      | FTC5     | 00FF1EH·D3     | ETC5        | 00FF18H·D3      | ]                           |            |  |
| Timer 6 | Counter underflow  | FTU6     | 00FF1EH·D4     | ETU6        | 00FF18H·D4      | PPT6                        | 00FF11H·D6 |  |
|         | Compare match      | FTC6     | 00FF1EH·D5     | ETC6        | 00FF18H·D5      | PPT7                        | 00FF11H·D7 |  |
| Timer 7 | Counter underflow  | FTU7     | 00FF1EH·D6     | ETU7        | 00FF18H·D6      |                             |            |  |
|         | Compare match      | FTC7     | 00FF1EH·D7     | ETC7        | 00FF18H·D7      |                             |            |  |

Table 13.5.1 Interrupt control registers

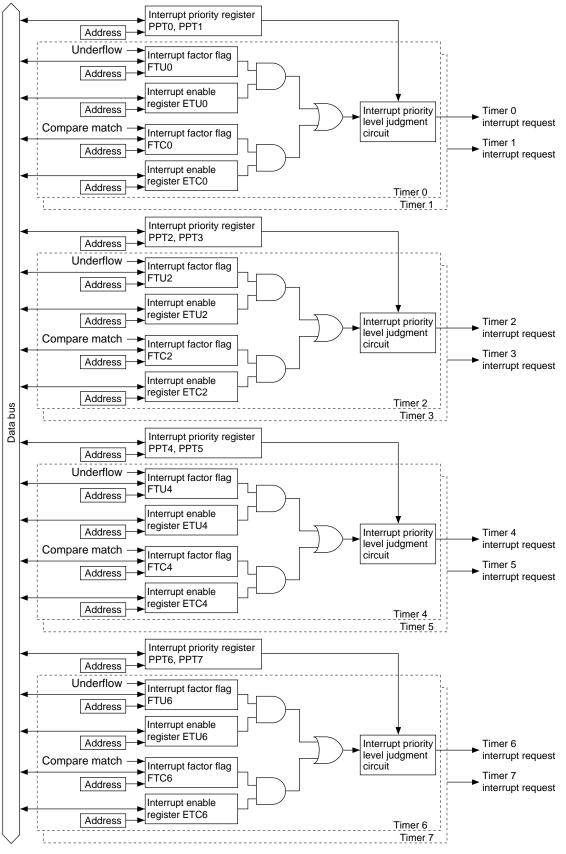



Fig. 13.5.1 Configuration of 16-bit programmable timer interrupt circuit

# 13.6 Setting TOUT Outputs

The 16-bit programmable timer can generate TOUT signals with the underflow and compare match signals of each timer. The TOUT signal generated in the 16-bit programmable timer can be output from the I/O port terminal shown in Table 13.6.1 so that a clock is supplied for external devices or it can be used as a PWM waveform output.

|         | 1                 |                 |  |  |
|---------|-------------------|-----------------|--|--|
| Timer   | Output clock name | Output terminal |  |  |
| Timer 0 | TOUT0             | P20             |  |  |
| Timer 1 | TOUT1             | P20             |  |  |
| Timer 2 | TOUT2             | P21             |  |  |
|         | TOUT2             | P23             |  |  |
| Timer 3 | TOUT3             | P21             |  |  |
|         | TOUT3             | P23             |  |  |

Table 13.6.1 TOUT output terminal

The TOUT signal rises at the falling edge of the underflow signal and falls at the falling edge of the compare match signal. TOUT is the inverted TOUT signal. Therefore, it is possible to change the frequency and duty ratio of the TOUT signal by setting the reload data register (RDR) and compare data register (CDR).

However, it needs a condition setting: RDR > CDR,  $CDR \neq 0$ . In the case of  $RDR \leq CDR$ , TOUT signal is fixed at "1".

The TOUT output can be controlled ON and OFF using the clock output control register PTOUTx of each timer and the TOUT output can be controlled using the inverted clock output control register RPTOUTx of Timer 2 or Timer 3.

When PTOUTx (RPTOUTx) is set to "1", the TOUTx (TOUTx) signal is output from the corresponding port terminal, when "0" is set, the port is set for DC output. When PTOUTx (RPTOUTx) is "1", settings of the I/O control register IOC20/IOC21/IOC23 and data register P20D/P21D/P23D become invalid.

Note: If PTOUT0 and PTOUT1 are set to "1" at the same time, PTOUT1 is effective. Similarly, if PTOUT2 (RPTOUT2) and PTOUT3 (RPTOUT3) are set to "1", PTOUT3 (RPTOUT3) is effective.

In the 16-bit mode, the output is controlled by the control register PTOUT(H) for Timer(H). The clock is output from Timer(H).

Since the TOUTx (TOUTx) signal is generated asynchronously from the register PTOUTx (RPTOUTx), when the signal is turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated.

Figure 13.6.1 shows the output waveform of TOUT signal.

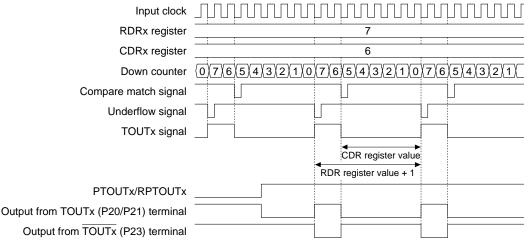



Fig. 13.6.1 Output waveform of TOUT signal

## 13.7 Setting Transfer Rate of Serial Interface

The underflow signals of Timer 1 and Timer 7 can be used as the source clock for serial interface Ch. 0 and Ch.1, respectively. The transfer rate is set using the registers PST1x and RDR1x for Ch. 0 or PST7x and RDR7x for Ch. 1. (since only the underflow signal is used as the serial interface clock source, the CDR1x or CDR7x register value does not affect the transfer rates. It can be set to any value). Since the underflow signal of Timer is divided by 32 in the serial interface, the value set in the register RDR1x or RDR7x which corresponds to the transfer rate is shown in the following expression:

$$RDR = \frac{fdiv}{32 \times bps} - 1$$

RDR:RDR1x or RDR7x set value fdiv: Input clock frequency (setting of PST1x or PST7x) bps: Transfer rate

|               |             | OSC3     | oscillation | frequency / | Programma  | able timer s | ettings            |       |  |  |
|---------------|-------------|----------|-------------|-------------|------------|--------------|--------------------|-------|--|--|
| Transfer rate | fosc3 = 2.4 | 4576 MHz | fosc3 = 3.  | 0720 MHz    | fosc3 = 3. | 6864 MHz     | fosc3 = 4.3008 MHz |       |  |  |
| (bps)         | PST1x       | RDR1x    | PST1x       | RDR1x       | PST1x      | RDR1x        | PST1x              | RDR1x |  |  |
|               | PST7x       | RDR7x    | PST7x       | RDR7x       | PST7x      | RDR7x        | PST7x              | RDR7x |  |  |
| 19,200        | 00H         | 03H      | 00H         | 04H         | 00H        | 05H          | 00H                | 06H   |  |  |
| 9,600         | 00H         | 07H      | 00H         | 09H         | 00H        | 0BH          | 00H                | 0DH   |  |  |
| 4,800         | 00H         | 0FH      | 00H         | 13H         | 00H        | 17H          | 00H                | 1BH   |  |  |
| 2,400         | 00H         | 1FH      | 00H         | 27H         | 00H        | 2FH          | 00H                | 37H   |  |  |
| 1,200         | 00H         | 3FH      | 00H         | 4FH         | 00H        | 5FH          | 00H                | 6FH   |  |  |
| 600           | 00H         | 7FH      | 00H         | 9FH         | 00H        | BFH          | 00H                | DFH   |  |  |
| 300           | 02H         | 1FH      | 03H         | 09H         | 01H        | BFH          | 01H                | DFH   |  |  |
| 150           | 02H         | 3FH      | 03H         | 13H         | 02H        | 5FH          | 02H                | 6FH   |  |  |

| Table 13.7.1 | Example | of transfer | rate setting |
|--------------|---------|-------------|--------------|
|--------------|---------|-------------|--------------|

\* Since the underflow signal only is used as the clock source, the CDR1x or CDR7x register value does not affect the transfer rates.

## 13.8 Setting Clock for LCD Driver Display Timing Generator

The underflow signal of Timer 5 can be used as the source clock for the display timing generator in the LCD driver. This makes it possible to set the frame frequency minutely.

The frequency is set up using the registers PST5x and RDR5x (since only the underflow signal is used as the source clock, the CDR5x register value does not affect the frame signal. It can be set to any value).

The Timer 5 underflow signal is divided by 2 before supplying to the display timing generator, so set a value represented by the following expressions to the register RDR5x.

$$RDR5x = \frac{fdiv}{2 \times fcL} -$$

or

$$RDR5x = \frac{fdiv}{2 \times 64 \times fFR} - 1$$

fdiv: Input clock frequency (setting of PST5x)

1

- fcL: Display timing generator source clock frequency (Hz)
- fFR: Frame frequency (Hz)

# 13.9 Details of Control Register

| Table 13.9.1 shows the programmable timer control bits. |
|---------------------------------------------------------|
|---------------------------------------------------------|

| <i>Table 13.9.1(a)</i> | Programmable | timer control bits |
|------------------------|--------------|--------------------|
|------------------------|--------------|--------------------|

| Address | Bit        | Name   |         |                   |        | nction                           | ogrammable                    | 1     | 0     | SR | R/W  | Comment             |
|---------|------------|--------|---------|-------------------|--------|----------------------------------|-------------------------------|-------|-------|----|------|---------------------|
| 00FF20  | D7         | PRPRT1 | Program | mmable            | timer  | 1 clock cor                      | ntrol                         | On    | Off   | 0  | R/W  |                     |
|         |            | PST12  |         |                   |        | 1 division 1                     |                               |       |       | 0  | R/W  | -                   |
|         | 20         | 10112  |         | PST11             |        | (OSC3)                           | (OSC1)                        |       |       |    | 10   |                     |
|         |            |        | 1       | 1                 | 1      | fosc3 / 4096                     |                               |       |       |    |      |                     |
|         | D5         | PST11  | 1       | 1                 | 0      | fosc3 / 1024                     |                               |       |       | 0  | R/W  |                     |
|         |            |        | 1<br>1  | 0<br>0            | 1<br>0 | fosc3 / 256<br>fosc3 / 64        | fosc1 / 32<br>fosc1 / 16      |       |       |    |      |                     |
|         |            |        | 0       | 1                 | 1      | fosc3 / 32                       | fosci / 8                     |       |       |    |      |                     |
|         | D4         | PST10  | 0       | 1                 | 0      | fosc3 / 8                        | fosci / 4                     |       |       | 0  | R/W  |                     |
|         |            |        | 0       | 0<br>0            | 1<br>0 | fosc3 / 2<br>fosc3 / 1           | fosc1 / 2<br>fosc1 / 1        |       |       |    |      |                     |
|         | <b>D</b> 0 |        |         | -                 | -      |                                  |                               | -     | 0.00  | 0  | DAV  | -                   |
|         |            |        |         |                   |        | 0 clock con                      |                               | On    | Off   | 0  | R/W  | -                   |
|         | D2         | PST02  | U       |                   |        | 0 division 1                     |                               |       |       | 0  | R/W  |                     |
|         |            |        | 1       | $\frac{PST01}{1}$ | 1      | $\frac{(OSC3)}{f_{onco} / 4006}$ | $-\frac{(OSC1)}{fosc1 / 128}$ |       |       |    |      |                     |
|         | <b>D</b> 1 | PST01  | 1       | 1                 | 0      | fosc3 / 4090                     |                               |       |       |    |      |                     |
|         | וט         | P3101  | 1       | 0                 | 1      | fosc3 / 256                      | fosc1 / 32                    |       |       | 0  | R/W  |                     |
|         |            |        | 1       | 0                 | 0      | fosc3 / 64                       | fosci / 16                    |       |       |    |      |                     |
|         | 00         | PST00  | 0<br>0  | 1<br>1            | 1<br>0 | fosc3 / 32<br>fosc3 / 8          | fosc1 / 8<br>fosc1 / 4        |       |       | 0  | R/W  |                     |
|         | 00         | 10100  | 0       | 0                 | 1      | fosc3 / 2                        | fosci / 2                     |       |       |    |      |                     |
|         |            |        | 0       | 0                 | 0      | fosc3 / 1                        | fosci / 1                     |       |       |    |      |                     |
| 00FF21  | D7         | PRPRT3 | Program | mmable            | timer  | 3 clock con                      | ntrol                         | On    | Off   | 0  | R/W  |                     |
|         | D6         | PST32  | Program | mmable            | timer  | 3 division 1                     | atio                          |       |       | 0  | R/W  | -                   |
|         |            |        | PST32   | PST31             | PST30  | (OSC3)                           | (OSC1)                        |       |       |    |      |                     |
|         |            |        | 1       | 1                 | 1      |                                  | fosc1 / 128                   |       |       |    |      |                     |
|         | D5         | PST31  | 1<br>1  | 1<br>0            | 0<br>1 | fosc3 / 1024<br>fosc3 / 256      | fosc1 / 64<br>fosc1 / 32      |       |       | 0  | R/W  |                     |
|         |            |        | 1       | 0                 | 0      | fosc3 / 64                       | fosci / 16                    |       |       |    |      |                     |
|         |            |        | 0       | 1                 | 1      | fosc3 / 32                       | fosci / 8                     |       |       |    |      |                     |
|         | D4         | PST30  | 0       | 1                 | 0      | fosc3 / 8                        | fosci / 4                     |       |       | 0  | R/W  |                     |
|         |            |        | 0       | 0                 | 1<br>0 | fosc3 / 2<br>fosc3 / 1           | fosc1 / 2<br>fosc1 / 1        |       |       |    |      |                     |
|         | ΓЗ         | PRPRT2 | Program |                   | -      | 2 clock con                      |                               | On    | Off   | 0  | R/W  |                     |
|         |            |        |         |                   |        | 2 division r                     |                               | Oli   | Oli   | 0  | R/W  | -                   |
|         |            | F 3122 | -       | PST21             |        | (OSC3)                           | (OSC1)                        |       |       |    | K/ W |                     |
|         |            |        | 1       | 1                 | 1      |                                  | fosc1 / 128                   |       |       |    |      |                     |
|         | D1         | PST21  | 1       | 1                 | 0      | fosc3 / 1024                     | fosc1 / 64                    |       |       | 0  | R/W  |                     |
|         |            |        | 1       | 0                 | 1      | fosc3 / 256                      | fosci / 32                    |       |       |    |      |                     |
|         |            |        | 1<br>0  | 0<br>1            | 0<br>1 | fosc3 / 64<br>fosc3 / 32         | fosc1 / 16<br>fosc1 / 8       |       |       |    |      |                     |
|         | D0         | PST20  | 0       | 1                 | 0      | fosc3 / 8                        | fosci / 4                     |       |       | 0  | R/W  |                     |
|         |            |        | 0       | 0                 | 1      | fosc3 / 2                        | fosci / 2                     |       |       |    |      |                     |
|         |            |        | 0       | 0                 | 0      | fosc3 / 1                        | fosci / 1                     |       |       |    |      |                     |
| 00FF23  | D7         | -      | -       |                   |        |                                  |                               | -     | -     | -  | R    | Constantly "0" when |
|         | D6         | -      | -       |                   |        |                                  |                               | -     | -     | -  | R    | being read          |
|         | D5         | -      | -       |                   |        |                                  |                               | -     | -     | -  | R    |                     |
|         | D4         | -      | R/W re  | gister            |        |                                  |                               | 1     | 0     | 0  | R/W  | Reserved register   |
|         | D3         | PRTF3  | Program | mmable            | timer  | 3 source cl                      | ock selection                 | fosci | fosc3 | 0  | R/W  |                     |
|         |            |        | 0       |                   |        |                                  | ock selection                 | fosci | fosc3 | 0  | R/W  | -                   |
|         |            |        | -       |                   |        |                                  | ock selection                 | fosci | fosc3 | 0  | R/W  | -                   |
|         |            |        | U       |                   |        |                                  | ock selection                 | fosci |       | 0  | R/W  | -                   |
|         | טט         | INIFU  | riograf | mnable            | umer   | o source cl                      | ock selection                 | TOSCI | fosc3 | 0  | r/w  |                     |

| Address | Bit | Nomo    | Table 13.9.1(b) Programmable<br>Function                                                                                | 1              | 0              | CD. | R/W   | Commont             |
|---------|-----|---------|-------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----|-------|---------------------|
|         |     | Name    |                                                                                                                         | ·              | -              | SR  |       | Comment             |
| 00FF24  |     |         | Programmable timer 5 clock control                                                                                      | On             | Off            | 0   | R/W   | -                   |
|         | D6  | PST52   | Programmable timer 5 division ratio<br>PST52 PST51 PST50 (OSC3) (OSC1)                                                  |                |                | 0   | R/W   |                     |
|         |     |         | $\frac{15152}{1} \frac{15151}{1} \frac{15150}{1} \frac{(050)}{\text{fosc}} \frac{(050)}{\text{fosc}} \frac{(050)}{128}$ |                |                |     |       |                     |
|         | D5  | PST51   | 1 1 0 fosc3 / 1024 fosc1 / 64                                                                                           |                |                | 0   | R/W   |                     |
|         | -   |         | 1 0 1 fosc3 / 256 fosc1 / 32<br>1 0 0 fosc3 / 64 fosc1 / 16                                                             |                |                |     |       |                     |
|         |     |         | 0  1  1  1  1  1  1  1  1  1                                                                                            |                |                |     |       |                     |
|         | D4  | PST50   | 0 1 0 fosc3 / 8 fosc1 / 4                                                                                               |                |                | 0   | R/W   |                     |
|         |     |         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                    |                |                |     |       |                     |
|         | 2   |         | Programmable timer 4 clock control                                                                                      | On             | Off            | 0   | R/W   | -                   |
|         | D3  | PST42   | Programmable timer 4 division ratio                                                                                     | UII            | UII            | 0   | R/W   | -                   |
|         | 02  | F 3142  | PST42 PST41 PST40 (OSC3) (OSC1)                                                                                         |                |                | 0   | K/W   |                     |
|         |     |         | 1 1 1 fosc3 / 4096 fosc1 / 128                                                                                          |                |                |     |       |                     |
|         | D1  | PST41   | 1 1 0 $fosc_3 / 1024 fosc_1 / 64$                                                                                       |                |                | 0   | R/W   |                     |
|         |     |         | 1 0 1 fosc3 / 256 fosc1 / 32<br>1 0 0 fosc3 / 64 fosc1 / 16                                                             |                |                |     |       |                     |
|         |     |         | 0 1 1 fosc3 / 32 fosc1 / 8                                                                                              |                |                |     |       |                     |
|         | D0  | PST40   | 0 	 1 	 0 	 fosc3 / 8 	 fosc1 / 4                                                                                       |                |                | 0   | R/W   |                     |
|         |     |         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                    |                |                |     |       |                     |
| 00FF25  | D7  | PRPRT7  | Programmable timer 7 clock control                                                                                      | On             | Off            | 0   | R/W   |                     |
| 001120  |     | PST72   | Programmable timer 7 division ratio                                                                                     | 011            | OII            | 0   | R/W   | -                   |
|         | 00  | 10172   | PST72 PST71 PST70 (OSC3) (OSC1)                                                                                         |                |                | 0   |       |                     |
|         |     |         | 1 1 1 fosc3 / 4096 fosc1 / 128                                                                                          |                |                |     |       |                     |
|         | D5  | PST71   | 1 1 0 $fosc_3 / 1024 fosc_1 / 64$                                                                                       |                |                | 0   | R/W   |                     |
|         |     |         | 1 0 1 fosc3 / 256 fosc1 / 32<br>1 0 0 fosc3 / 64 fosc1 / 16                                                             |                |                |     |       |                     |
|         |     |         | 0 	 1 	 1 	 fosc3 / 32 	 fosc1 / 8                                                                                      |                |                |     |       |                     |
|         | D4  | PST70   | 0 1 0 fosc3 / 8 fosc1 / 4                                                                                               |                |                | 0   | R/W   |                     |
|         |     |         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                    |                |                |     |       |                     |
|         | D3  | PRPRT6  | Programmable timer 6 clock control                                                                                      | On             | Off            | 0   | R/W   | -                   |
|         | D2  | PST62   | Programmable timer 6 division ratio                                                                                     |                |                | 0   | R/W   | -                   |
|         |     |         | PST62 PST61 PST60 (OSC3) (OSC1)                                                                                         |                |                | Ŭ   | 10.11 |                     |
|         |     |         | 1 1 1 fosc3 / 4096 fosc1 / 128                                                                                          |                |                |     |       |                     |
|         | D1  | PST61   | 1 1 0 fosc3 / 1024 fosc1 / 64<br>1 0 1 fosc3 / 256 fosc1 / 32                                                           |                |                | 0   | R/W   |                     |
|         |     |         | 1 	 0 	 0 	 fosc3 / 250 	 fosc1 / 52 	 1 	 0 	 0 	 fosc3 / 64 	 fosc1 / 16 	 16                                         |                |                |     |       |                     |
|         |     | PST60   | 0 1 1 fosc3 / 32 fosc1 / 8                                                                                              |                |                |     |       |                     |
|         | 00  | F3100   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                    |                |                | 0   | R/W   |                     |
|         |     |         | 0 	 0 	 0 	 0 	 fosc3 / 1 	 fosc1 / 1                                                                                   |                |                |     |       |                     |
| 00FF27  | D7  | -       | -                                                                                                                       | -              | -              | _   | R     | Constantly "0" when |
|         | D6  | -       | -                                                                                                                       | -              | -              | _   | R     | being read          |
|         | D5  | -       | -                                                                                                                       | -              | -              | _   | R     | ]                   |
|         | D4  | -       | _                                                                                                                       | -              | _              | _   | R     | 1                   |
|         | D3  | PRTF7   | Programmable timer 7 source clock selection                                                                             | fosc1          | fosc3          | 0   | R/W   |                     |
|         | D2  | PRTF6   | Programmable timer 6 source clock selection                                                                             | fosci          | fosc3          | 0   | R/W   | 1                   |
|         | D1  | PRTF5   | Programmable timer 5 source clock selection                                                                             | fosci          | fosc3          | 0   | R/W   | 1                   |
|         | D0  | PRTF4   | Programmable timer 4 source clock selection                                                                             | fosci          | fosc3          | 0   | R/W   | 1                   |
| 00FF30  | D7  |         | PTM0–1 8/16-bit mode selection                                                                                          | 16-bit x 1     | 8-bit x 2      | 0   | R/W   |                     |
|         | D6  |         | External clock 0 noise rejector selection                                                                               | Enable         | Disable        | 0   | R/W   | 1                   |
|         | D5  | _       |                                                                                                                         |                |                | 0   | R     | "0" when being read |
|         | D3  | _       | R/W register                                                                                                            | 1              | 0              | 0   | R/W   | Reserved register   |
|         |     | ΡΤΟΙΙΤΟ | PTM0 clock output control                                                                                               | On             | Off            | 0   | R/W   |                     |
|         | D3  |         | PTM0 Run/Stop control                                                                                                   | Run            | Stop           | 0   | R/W   | 1                   |
|         | D2  | PSET0   | PTM0 preset                                                                                                             | Preset         | No operation   | 0   | W     | "0" when hains mad  |
|         | D0  |         | PTM0 preset<br>PTM0 input clock selection                                                                               |                | -              | 0   | R/W   | "0" when being read |
|         | טע  | UNSELU  | r i wo niput clock selection                                                                                            | External clock | Internal clock | U   | K/ W  |                     |

*Table 13.9.1(b) Programmable timer control bits* 

| Address  | Bit | Name   | Function                           | 1              | 0              | SR | R/W | Comment             |
|----------|-----|--------|------------------------------------|----------------|----------------|----|-----|---------------------|
| 00FF31   | D7  | -      | -                                  | -              | -              | 0  | R   | Constantly "0" when |
|          | D6  | -      | _                                  | -              | -              | 0  | R   | being read          |
|          | D5  | -      | _                                  | -              | -              | 0  | R   |                     |
|          | D4  | -      | R/W register                       | 1              | 0              | 0  | R/W | Reserved register   |
|          | D3  | PTOUT1 | PTM1 clock output control          | On             | Off            | 0  | R/W |                     |
|          | D2  | PTRUN1 | PTM1 Run/Stop control              | Run            | Stop           | 0  | R/W |                     |
|          | D1  | PSET1  | PTM1 preset                        | Preset         | No operation   | 0  | W   | "0" when being read |
|          | D0  | CKSEL1 | PTM1 input clock selection         | External clock | Internal clock | 0  | R/W |                     |
| 00FF32   | D7  | RDR07  | PTM0 reload data D7 (MSB)          |                |                |    |     |                     |
|          | D6  | RDR06  | PTM0 reload data D6                |                |                |    |     |                     |
|          | D5  | RDR05  | PTM0 reload data D5                |                |                |    |     |                     |
|          | D4  | RDR04  | PTM0 reload data D4                |                | _              |    |     |                     |
|          | D3  | RDR03  | PTM0 reload data D3                | High           | Low            | 1  | R/W |                     |
|          | D2  | RDR02  | PTM0 reload data D2                |                |                |    |     |                     |
|          | D1  | RDR01  | PTM0 reload data D1                |                |                |    |     |                     |
|          | D0  | RDR00  | PTM0 reload data D0 (LSB)          |                |                |    |     |                     |
| 00FF33   |     | RDR17  | PTM1 reload data D7 (MSB)          |                |                |    |     |                     |
|          |     |        | PTM1 reload data D6                |                |                |    |     |                     |
|          |     |        | PTM1 reload data D5                |                |                |    |     |                     |
| D        |     |        | PTM1 reload data D4                |                |                |    |     |                     |
|          |     |        | PTM1 reload data D3                | High           | Low            | 1  | R/W |                     |
|          |     |        | PTM1 reload data D2                |                |                |    |     |                     |
|          |     | RDR11  | PTM1 reload data D1                |                |                |    |     |                     |
| F        |     | RDR10  | PTM1 reload data D0 (LSB)          |                |                |    |     |                     |
| 00FF34   |     | CDR07  | PTM0 compare data D7 (MSB)         |                |                |    |     |                     |
|          |     | CDR06  | PTM0 compare data D6               |                |                |    |     |                     |
|          |     |        | PTM0 compare data D5               |                |                |    |     |                     |
|          |     |        | PTM0 compare data D4               |                |                |    |     |                     |
|          |     |        | PTM0 compare data D3               | High           | Low            | 0  | R/W |                     |
|          |     |        | PTM0 compare data D2               |                |                |    |     |                     |
|          |     | CDR01  | PTM0 compare data D1               |                |                |    |     |                     |
|          |     | CDR00  | PTM0 compare data D0 (LSB)         |                |                |    |     |                     |
| 00FF35   |     | CDR17  | PTM1 compare data D7 (MSB)         |                |                |    |     |                     |
| 001100   |     |        | PTM1 compare data D6               |                |                |    |     |                     |
|          |     |        | PTM1 compare data D5               |                |                |    |     |                     |
|          |     |        | PTM1 compare data D4               |                |                |    |     |                     |
|          |     |        | PTM1 compare data D3               | High           | Low            | 0  | R/W |                     |
|          |     | CDR12  | PTM1 compare data D2               |                |                |    |     |                     |
|          |     | CDR11  | PTM1 compare data D1               |                |                |    |     |                     |
|          |     | CDR10  | PTM1 compare data D1 (LSB)         |                |                |    |     |                     |
| 00FF36   |     | PTM07  | *                                  |                |                |    |     |                     |
| 501 - 50 |     | PTM07  | PTM0 data D7 (MSB)<br>PTM0 data D6 |                |                |    |     |                     |
|          |     | PTM05  |                                    |                |                |    |     |                     |
|          |     |        | PTM0 data D5                       |                |                |    |     |                     |
|          |     | PTM04  | PTM0 data D4                       | High           | Low            | 1  | R   |                     |
|          |     | PTM03  | PTM0 data D3                       |                |                |    |     |                     |
|          |     | PTM02  | PTM0 data D2                       |                |                |    |     |                     |
|          |     | PTM01  | PTM0 data D1                       |                |                |    |     |                     |
|          | 00  | PTM00  | PTM0 data D0 (LSB)                 |                |                |    |     |                     |

*Table 13.9.1(c) Programmable timer control bits* 

| Address | Bit | Name    | Table 13.9.1(d) Programmable<br>Function  | 1              | 0              | SR  | R/W  | Comment             |
|---------|-----|---------|-------------------------------------------|----------------|----------------|-----|------|---------------------|
| 00FF37  |     | PTM17   | PTM1 data D7 (MSB)                        |                | Ŭ              | UIX |      | Common              |
| 001107  |     | PTM16   | PTM1 data D6                              |                |                |     |      |                     |
|         |     | PTM15   | PTM1 data D5                              |                |                |     |      |                     |
|         |     | PTM14   | PTM1 data D4                              |                |                |     |      |                     |
|         |     | PTM13   | PTM1 data D3                              | High           | Low            | 1   | R    |                     |
|         |     |         | PTM1 data D2                              |                |                |     |      |                     |
|         |     | PTM11   | PTM1 data D1                              |                |                |     |      |                     |
|         |     |         | PTM1 data D0 (LSB)                        |                |                |     |      |                     |
| 00FF38  | _   |         | PTM2–3 8/16-bit mode selection            | 16-bit x 1     | 8-bit x 2      | 0   | R/W  |                     |
|         |     | -       | External clock 1 noise rejector selection | Enable         | Disable        | 0   | R/W  |                     |
|         | D5  |         | _                                         |                | _              | 0   | R    | "0" when being read |
|         | -   |         | PTM2 inverted clock output control        | On             | Off            | 0   | R/W  | o when being read   |
|         |     |         | PTM2 clock output control                 | On             | Off            | 0   | R/W  |                     |
|         |     |         | PTM2 Run/Stop control                     | Run            | Stop           | 0   | R/W  |                     |
|         |     |         | PTM2 preset                               | Preset         | No operation   | 0   | W    | "0" when being read |
|         |     |         | PTM2 input clock selection                |                | Internal clock | 0   | R/W  | o when being read   |
| 00FF39  | D7  | _       |                                           | _              | _              | 0   | R    | Constantly "0" when |
|         | D6  | _       | _                                         | _              | _              | 0   | R    | being read          |
|         | D5  | _       | _                                         | _              | _              | 0   | R    |                     |
|         | D4  | RPTOUT3 | PTM3 inverted clock output control        | On             | Off            | 0   | R/W  |                     |
|         |     |         | PTM3 clock output control                 | On             | Off            | 0   | R/W  |                     |
|         | D2  | PTRUN3  | PTM3 Run/Stop control                     | Run            | Stop           | 0   | R/W  |                     |
|         |     |         | PTM3 preset                               | Preset         | No operation   | 0   | W    | "0" when being read |
|         | D0  |         | PTM3 input clock selection                | External clock | Internal clock | 0   | R/W  |                     |
| 00FF3A  |     |         | PTM2 reload data D7 (MSB)                 |                |                |     |      |                     |
|         | D6  | RDR26   | PTM2 reload data D6                       |                |                |     |      |                     |
|         | D5  | RDR25   | PTM2 reload data D5                       |                |                |     |      |                     |
|         | D4  | RDR24   | PTM2 reload data D4                       |                | _              |     |      |                     |
|         | D3  | RDR23   | PTM2 reload data D3                       | High           | Low            | 1   | R/W  |                     |
|         | D2  | RDR22   | PTM2 reload data D2                       |                |                |     |      |                     |
|         | D1  | RDR21   | PTM2 reload data D1                       |                |                |     |      |                     |
|         | D0  | RDR20   | PTM2 reload data D0 (LSB)                 |                |                |     |      |                     |
| 00FF3B  | D7  | RDR37   | PTM3 reload data D7 (MSB)                 |                |                |     |      |                     |
|         | D6  | RDR36   | PTM3 reload data D6                       |                |                |     |      |                     |
|         | D5  | RDR35   | PTM3 reload data D5                       |                |                |     |      |                     |
|         | D4  | RDR34   | PTM3 reload data D4                       | TT: -1         | T              | 1   | R/W  |                     |
|         | D3  | RDR33   | PTM3 reload data D3                       | High           | Low            | 1   | K/ W |                     |
|         | D2  | RDR32   | PTM3 reload data D2                       |                |                |     |      |                     |
|         | D1  | RDR31   | PTM3 reload data D1                       |                |                |     |      |                     |
|         | D0  | RDR30   | PTM3 reload data D0 (LSB)                 |                |                |     |      |                     |
| 00FF3C  | D7  | CDR27   | PTM2 compare data D7 (MSB)                |                |                |     |      |                     |
|         | D6  | CDR26   | PTM2 compare data D6                      |                |                |     |      |                     |
|         | D5  | CDR25   | PTM2 compare data D5                      |                |                |     |      |                     |
|         | D4  | CDR24   | PTM2 compare data D4                      | Linh           | Low            | 0   | R/W  |                     |
|         | D3  | CDR23   | PTM2 compare data D3                      | High           | Low            | U   | K/W  |                     |
|         | D2  | CDR22   | PTM2 compare data D2                      |                |                |     |      |                     |
| D1      | D1  | CDR21   | PTM2 compare data D1                      |                |                |     |      |                     |
|         | D0  | CDR20   | PTM2 compare data D0 (LSB)                |                |                |     |      |                     |

*Table 13.9.1(d) Programmable timer control bits* 

| Address | Bit      | Name           | Function                                             | 1              | 0              | SR | R/W | Comment              |
|---------|----------|----------------|------------------------------------------------------|----------------|----------------|----|-----|----------------------|
| 00FF3D  | D7       | CDR37          | PTM3 compare data D7 (MSB)                           |                |                |    |     |                      |
|         | D6       | CDR36          | PTM3 compare data D6                                 |                |                |    |     |                      |
|         | D5       | CDR35          | PTM3 compare data D5                                 |                |                |    |     |                      |
|         |          | CDR34          | PTM3 compare data D4                                 |                |                |    |     |                      |
|         |          | CDR33          | PTM3 compare data D3                                 | High           | Low            | 0  | R/W |                      |
|         |          | CDR32          | PTM3 compare data D2                                 |                |                |    |     |                      |
|         |          | CDR31          | PTM3 compare data D1                                 |                |                |    |     |                      |
|         |          | CDR30          | PTM3 compare data D0 (LSB)                           |                |                |    |     |                      |
| 00FF3E  |          | PTM27          | PTM2 data D7 (MSB)                                   |                |                |    |     |                      |
|         |          | PTM26          | PTM2 data D6                                         |                |                |    |     |                      |
|         |          | PTM25          | PTM2 data D5                                         |                |                |    |     |                      |
|         |          | PTM24          | PTM2 data D4                                         |                |                |    |     |                      |
|         |          | PTM23          | PTM2 data D3                                         | High           | Low            | 1  | R   |                      |
|         |          | PTM22          | PTM2 data D2                                         |                |                |    |     |                      |
|         |          | PTM21          | PTM2 data D1                                         |                |                |    |     |                      |
|         |          | PTM20          | PTM2 data D0 (LSB)                                   |                |                |    |     |                      |
| 00FF3F  |          | PTM20          | PTM3 data D7 (MSB)                                   |                |                |    |     |                      |
| 001101  |          | PTM36          | PTM3 data D6                                         |                |                |    |     |                      |
|         |          | PTM35          | PTM3 data D5                                         |                |                |    |     |                      |
|         |          | PTM35          |                                                      |                |                |    |     |                      |
|         |          | PTM34          | PTM3 data D4                                         | High           | Low            | 1  | R   |                      |
|         |          | PTM33<br>PTM32 | PTM3 data D3                                         |                |                |    |     |                      |
|         |          |                | PTM3 data D2                                         |                |                |    |     |                      |
|         |          | PTM31          | PTM3 data D1                                         |                |                |    |     |                      |
| 00FF80  | _        | PTM30          | PTM3 data D0 (LSB)<br>PTM4–5 8/16-bit mode selection | 16-bit x 1     | 8-bit x 2      | 0  | R/W |                      |
| 001100  |          |                | External clock 2 noise rejector selection            | Enable         | Disable        | 0  | R/W |                      |
|         | D5       |                | External clock 2 hoise rejector selection            | Lilable        | Disable        | 0  | R   | "O" when heine read  |
|         | D3       |                | P/W/register                                         | - 1            | - 0            | 0  | R/W | "0" when being read  |
|         | D4<br>D3 |                | R/W register                                         | 1              | 0              | 0  | R/W | Reserved register    |
|         |          |                | R/W register                                         |                |                | 0  | -   |                      |
|         |          |                | PTM4 Run/Stop control                                | Run            | Stop           | -  | R/W |                      |
|         | _        | PSET4          | PTM4 preset                                          | Preset         | No operation   | 0  | W   | "0" when being read  |
| 00FF81  | D0       | CKSEL4         | PTM4 input clock selection                           | External clock |                | -  | R/W | Constantia "0" ash a |
| 006601  | D7       |                |                                                      | -              | -              | 0  | R   | Constantly "0" when  |
|         | D6       |                |                                                      | -              | -              | 0  | R   | being read           |
|         | D5       |                |                                                      | -              | -              | 0  | R   | D 1 1                |
|         | D4       |                | R/W register                                         | 1              | 0              | -  |     | Reserved register    |
|         | D3       |                | R/W register                                         | 1              | 0              | 0  | R/W |                      |
|         |          |                | PTM5 Run/Stop control                                | Run            | Stop           | 0  | R/W |                      |
|         |          | PSET5          | PTM5 preset                                          | Preset         | No operation   | 0  | W   | "0" when being read  |
| 005500  | _        |                | PTM5 input clock selection                           | External clock | Internal clock | 0  | R/W |                      |
| 00FF82  |          | RDR47          | PTM4 reload data D7 (MSB)                            |                |                |    |     |                      |
|         |          | RDR46          | PTM4 reload data D6                                  |                |                |    |     |                      |
|         |          | RDR45          | PTM4 reload data D5                                  |                |                |    |     |                      |
|         |          | RDR44          | PTM4 reload data D4                                  | High           | Low            | 1  | R/W |                      |
|         |          | RDR43          | PTM4 reload data D3                                  |                |                |    |     |                      |
|         |          | RDR42          | PTM4 reload data D2                                  |                |                |    |     |                      |
|         |          | RDR41          | PTM4 reload data D1                                  |                |                |    |     |                      |
|         | D0       | RDR40          | PTM4 reload data D0 (LSB)                            |                |                |    |     |                      |

Table 13.9.1(e) Programmable timer control bits

| Address | Bit | Name     | Table 13.9.1(f) Programmable<br>Function  | 1              | 01 0115        | SR | R/W | Comment             |
|---------|-----|----------|-------------------------------------------|----------------|----------------|----|-----|---------------------|
| 00FF83  |     | RDR57    | PTM5 reload data D7 (MSB)                 | -              | -              |    |     |                     |
| 001100  |     | RDR56    | PTM5 reload data D6                       |                |                |    |     |                     |
|         |     | RDR55    | PTM5 reload data D5                       |                |                |    |     |                     |
|         |     | RDR54    | PTM5 reload data D5                       |                |                |    |     |                     |
|         |     | RDR53    |                                           | High           | Low            | 1  | R/W |                     |
|         |     |          | PTM5 reload data D3                       |                |                |    |     |                     |
|         |     |          | PTM5 reload data D2                       |                |                |    |     |                     |
|         |     | RDR51    | PTM5 reload data D1                       |                |                |    |     |                     |
| 00FF84  | _   | RDR50    | PTM5 reload data D0 (LSB)                 |                |                |    |     |                     |
| 001104  |     |          | PTM4 compare data D7 (MSB)                |                |                |    |     |                     |
|         |     |          | PTM4 compare data D5                      |                |                |    |     |                     |
|         |     |          | PTM4 compare data D5                      |                |                |    |     |                     |
|         |     |          | PTM4 compare data D4                      | High           | Low            | 0  | R/W |                     |
|         |     |          | PTM4 compare data D3                      |                |                |    |     |                     |
|         |     |          | PTM4 compare data D2                      |                |                |    |     |                     |
|         |     |          | PTM4 compare data D1                      |                |                |    |     |                     |
| 00FF85  |     | CDR40    | PTM4 compare data D0 (LSB)                |                |                |    |     |                     |
| 006600  |     |          | PTM5 compare data D7 (MSB)                |                |                |    |     |                     |
|         |     |          | PTM5 compare data D6                      |                |                |    |     |                     |
|         |     |          | PTM5 compare data D5                      |                |                |    |     |                     |
|         |     |          | PTM5 compare data D4                      | High           | Low            | 0  | R/W |                     |
|         |     |          | PTM5 compare data D3                      |                |                |    |     |                     |
|         |     |          | PTM5 compare data D2                      |                |                |    |     |                     |
|         |     |          | PTM5 compare data D1                      |                |                |    |     |                     |
| 00FF86  |     | CDR50    | PTM5 compare data D0 (LSB)                |                |                |    |     |                     |
| 007700  |     |          | PTM4 data D7 (MSB)                        |                |                |    |     |                     |
|         |     | PTM46    | PTM4 data D6                              |                |                |    |     |                     |
|         |     | PTM45    | PTM4 data D5                              |                |                |    |     |                     |
|         |     | PTM44    | PTM4 data D4                              | High           | Low            | 1  | R   |                     |
|         |     | PTM43    | PTM4 data D3                              |                |                |    |     |                     |
|         |     | PTM42    | PTM4 data D2                              |                |                |    |     |                     |
|         |     | PTM41    | PTM4 data D1                              |                |                |    |     |                     |
| 005507  | _   | PTM40    | PTM4 data D0 (LSB)                        |                |                |    |     |                     |
| 00FF87  |     | PTM57    | PTM5 data D7 (MSB)                        |                |                |    |     |                     |
|         |     |          | PTM5 data D6                              |                |                |    |     |                     |
|         |     |          | PTM5 data D5                              |                |                |    |     |                     |
|         |     |          | PTM5 data D4                              | High           | Low            | 1  | R   |                     |
|         |     | PTM53    | PTM5 data D3                              |                |                |    |     |                     |
|         |     | PTM52    | PTM5 data D2                              |                |                |    |     |                     |
|         |     | PTM51    | PTM5 data D1                              |                |                |    |     |                     |
| 005507  |     | PTM50    | PTM5 data D0 (LSB)                        |                |                | ^  | D   |                     |
| 00FF88  |     |          | PTM6–7 8/16-bit mode selection            | 16-bit x 1     | 8-bit x 2      | 0  | R/W |                     |
|         | D6  | PINKEN_D | External clock 3 noise rejector selection | Enable         | Disable        | 0  | R/W |                     |
|         | D5  | -        | -                                         | -              | -              | 0  | R   | "0" when being read |
|         | D4  | -        | R/W register                              | 1              | 0              | 0  | R/W | Reserved register   |
|         | D3  | -        | R/W register                              | 1              | 0              | 0  | R/W |                     |
|         | _   |          | PTM6 Run/Stop control                     | Run            | Stop           | 0  | R/W |                     |
|         | D1  |          | PTM6 preset                               | Preset         | No operation   | 0  | W   | "0" when being read |
|         | D0  | CKSEL6   | PTM6 input clock selection                | External clock | Internal clock | 0  | R/W |                     |

*Table 13.9.1(f) Programmable timer control bits* 

| Address | Bit | Name   | Function                     | 1              | 0              | SR | R/W | Comment             |
|---------|-----|--------|------------------------------|----------------|----------------|----|-----|---------------------|
| 00FF89  | D7  | -      | _                            | -              | -              | 0  | R   | Constantly "0" when |
|         | D6  | -      | _                            | -              | -              | 0  | R   | being read          |
|         | D5  | -      | _                            | -              | -              | 0  | R   |                     |
|         | D4  | -      | R/W register                 | 1              | 0              | 0  | R/W | Reserved register   |
|         | D3  | -      | R/W register                 | 1              | 0              | 0  | R/W |                     |
|         | D2  | PTRUN7 | PTM7 Run/Stop control        | Run            | Stop           | 0  | R/W |                     |
|         | D1  | PSET7  | PTM7 preset                  | Preset         | No operation   | 0  | W   | "0" when being read |
|         | D0  | CKSEL7 | PTM7 input clock selection   | External clock | Internal clock | 0  | R/W |                     |
| 00FF8A  | D7  | RDR67  | PTM6 reload data D7 (MSB)    |                |                |    |     |                     |
|         | D6  | RDR66  | PTM6 reload data D6          |                |                |    |     |                     |
|         | D5  | RDR65  | PTM6 reload data D5          |                |                |    |     |                     |
|         | D4  | RDR64  | PTM6 reload data D4          |                |                |    | Dav |                     |
|         | D3  | RDR63  | PTM6 reload data D3          | High           | Low            | 1  | R/W |                     |
|         | D2  | RDR62  | PTM6 reload data D2          | 1              |                |    |     |                     |
|         | D1  | RDR61  | PTM6 reload data D1          | 1              |                |    |     |                     |
|         | D0  | RDR60  | PTM6 reload data D0 (LSB)    | 1              |                |    |     |                     |
| 00FF8B  | D7  | RDR77  | PTM7 reload data D7 (MSB)    |                |                |    |     |                     |
|         | D6  | RDR76  | PTM7 reload data D6          |                |                |    |     |                     |
|         | D5  | RDR75  | PTM7 reload data D5          |                |                |    |     |                     |
|         |     | RDR74  | PTM7 reload data D4          |                |                |    |     |                     |
|         |     | RDR73  | PTM7 reload data D3          | High           | Low            | 1  | R/W |                     |
|         | D2  | RDR72  | PTM7 reload data D2          |                |                |    |     |                     |
|         |     | RDR71  | PTM7 reload data D1          |                |                |    |     |                     |
| DC      |     | RDR70  | PTM7 reload data D0 (LSB)    |                |                |    |     |                     |
| 00FF8C  |     | CDR67  | PTM6 compare data D7 (MSB)   |                |                |    |     |                     |
|         |     | CDR66  | PTM6 compare data D6         |                |                |    |     |                     |
|         |     | CDR65  | PTM6 compare data D5         |                |                |    |     |                     |
|         |     | CDR64  | PTM6 compare data D4         |                |                |    |     |                     |
|         |     | CDR63  | PTM6 compare data D3         | High           | Low            | 0  | R/W |                     |
|         |     | CDR62  | PTM6 compare data D2         |                |                |    |     |                     |
|         |     | CDR61  | PTM6 compare data D1         |                |                |    |     |                     |
|         |     | CDR60  | PTM6 compare data D0 (LSB)   |                |                |    |     |                     |
| 00FF8D  |     | CDR77  | PTM7 compare data D7 (MSB)   |                |                |    |     |                     |
|         |     |        | PTM7 compare data D6         |                |                |    |     |                     |
|         |     |        | PTM7 compare data D5         |                |                |    |     |                     |
|         |     |        | PTM7 compare data D4         |                |                |    |     |                     |
|         |     |        | PTM7 compare data D3         | High           | Low            | 0  | R/W |                     |
|         |     | CDR72  | PTM7 compare data D2         |                |                |    |     |                     |
|         |     | CDR71  | PTM7 compare data D1         |                |                |    |     |                     |
|         |     | CDR70  | PTM7 compare data D0 (LSB)   |                |                |    |     |                     |
| 00FF8E  |     | PTM67  | PTM6 data D7 (MSB)           |                |                |    |     |                     |
|         |     | PTM66  | PTM6 data D6                 |                |                |    |     |                     |
|         |     | PTM65  | PTM6 data D5                 |                |                |    |     |                     |
|         |     | PTM65  | PTM6 data D5<br>PTM6 data D4 |                |                |    |     |                     |
|         |     | PTM63  | PTM6 data D4                 | High           | Low            | 1  | R   |                     |
|         |     |        |                              |                |                |    |     |                     |
|         |     | PTM62  | PTM6 data D2                 |                |                |    |     |                     |
|         |     | PTM61  | PTM6 data D1                 |                |                |    |     |                     |
|         | טט  | PTM60  | PTM6 data D0 (LSB)           |                |                |    |     |                     |

*Table 13.9.1(g) Programmable timer control bits* 

| Address | Bit | Name  | Function           | 1     | 0   | SR | R/W | Comment |
|---------|-----|-------|--------------------|-------|-----|----|-----|---------|
| 00FF8F  | D7  | PTM77 | PTM7 data D7 (MSB) |       |     |    |     |         |
|         | D6  | PTM76 | PTM7 data D6       |       |     |    |     |         |
|         | D5  | PTM75 | PTM7 data D5       |       |     |    |     |         |
|         | D4  | PTM74 | PTM7 data D4       | II:-1 | T   | 1  | R   |         |
|         | D3  | PTM73 | PTM7 data D3       | High  | Low | 1  | ĸ   |         |
|         | D2  | PTM72 | PTM7 data D2       |       |     |    |     |         |
|         | D1  | PTM71 | PTM7 data D1       |       |     |    |     |         |
|         | D0  | PTM70 | PTM7 data D0 (LSB) |       |     |    |     |         |

Table 13.9.1(h) Programmable timer control bits

#### MODE16\_A: 00FF30H•D7 MODE16\_B: 00FF38H•D7 MODE16\_C: 00FF80H•D7 MODE16\_D: 00FF88H•D7

Selects either the 8/16 bit mode.

MODE16\_A, MODE16\_B, MODE16\_C and MODE16\_D are the 8/16-bit mode selection registers corresponding to Timers 0 and 1, Timers 2 and 3, Timers 4 and 5, and Timers 6 and 7, respectively. Select whether Timer(L) and Timer(H) are used as 2 channels independent 8-bit timers or as 1 channel combined 16-bit timer. When "0" is written to the MODE16\_A (-D) register, 8-bit × 2 channels is selected and when "1" is written, 16-bit × 1 channel is selected. At initial reset, this register is set to "0" (8-bit × 2 channels).

#### *PTNREN\_A: 00FF30H•D6 PTNREN\_B: 00FF38H•D6 PTNREN\_C: 00FF80H•D6 PTNREN\_D: 00FF88H•D6*

Enables/disables the noise rejector in the external clock input circuit.

When "1" is written:EnabledWhen "0" is written:DisabledReading:Valid

Writing "1" to PTNREN\_A (–D) enables the noise rejector for the external clock EXCL0 (–3). The noise rejector regards pulses less than a 16/fosc1 seconds in width as noise and rejects them.

When PTNREN\_A (-D) is "0", the external clock bypasses the noise rejector.

At initial reset, this register is set to "0" (disabled).

CKSEL0: 00FF30H•D0 CKSEL1: 00FF31H•D0 CKSEL2: 00FF38H•D0 CKSEL3: 00FF39H•D0 CKSEL4: 00FF80H•D0 CKSEL5: 00FF81H•D0 CKSEL6: 00FF88H•D0 CKSEL7: 00FF89H•D0

Selects the input clock for each timer.

When "1" is written:External clockWhen "0" is written:Internal clockReading:Valid

The clock to be input to each timer is selected from either the external clock (input signal of input port) or the internal clock (prescaler output clock).

When "0" is written to the CKSELx register, the internal clock (prescaler output INCLx) is selected as the input clock for Timer x. When "1" is written, the external clock (EXCL0 (P24 input) for Timers 0 and 1 EXCL1 (P25 input)

(P24 input) for Timers 0 and 1, EXCL1 (P25 input) for Timers 2 and 3, EXCL2 (P26 input) for Timers 4 and 5, EXCL3 (P27 input) for Timers 6 and 7) is selected and the timer functions as an event counter.

In the 16-bit mode, the setting of the CKSEL(H) register is invalid.

At initial reset, this register is set to "0" (internal clock).

| <i>PRTF0: 00FF23H•D0</i> |
|--------------------------|
| PRTF1: 00FF23H•D1        |
| <i>PRTF2: 00FF23H•D2</i> |
| PRTF3: 00FF23H•D3        |
| PRTF4: 00FF27H•D0        |
| PRTF5: 00FF27H•D1        |
| <i>PRTF6: 00FF27H•D2</i> |
| PRTF7: 00FF27H•D3        |

Selects the source clock for each timer (when internal clock is used).

When "1" is written:fosc1When "0" is written:fosc3Reading:Valid

When "1" is written to the PRTFx register, the OSC1 clock is selected as the source clock for Timer x.

When "0" is written, the OSC3 clock is selected. At initial reset, this register is set to "0" (fosc3).

PST00-PST02: 00FF20H•D0-D2 PST10-PST12: 00FF20H•D4-D6 PST20-PST22: 00FF21H•D0-D2 PST30-PST32: 00FF21H•D4-D6 PST40-PST42: 00FF24H•D0-D2 PST50-PST52: 00FF24H•D4-D6 PST60-PST62: 00FF25H•D0-D2 PST70-PST72: 00FF25H•D4-D6

Selects the input clock for each timer (when internal clock is used).

It can be selected from 8 types of division ratio shown in Tables 13.9.1(a) and (b). This register can also be read. At initial reset, this register is set to "0".

#### PRPRT0: 00FF20H•D3 PRPRT1: 00FF20H•D7 PRPRT2: 00FF21H•D3 PRPRT3: 00FF21H•D7 PRPRT4: 00FF24H•D3 PRPRT5: 00FF24H•D7 PRPRT6: 00FF25H•D3 PRPRT7: 00FF25H•D7

Controls the clock supply of each timer (when internal clock is used).

When "1" is written: ON When "0" is written: OFF Reading: Valid

By writing "1" to the PRPRTx register, the clock that is selected with the PSTx register is output to Timer x.

When "0" is written, the clock is not output. At initial reset, the this register is set to "0" (OFF).

| <i>RDR00–RDR07: 00FF32H</i> |
|-----------------------------|
| <i>RDR10–RDR17: 00FF33H</i> |
| RDR20-RDR27: 00FF3AH        |
| <i>RDR30–RDR37: 00FF3BH</i> |
| <i>RDR40–RDR47: 00FF82H</i> |
| <i>RDR50–RDR57: 00FF83H</i> |
| <i>RDR60–RDR67: 00FF8AH</i> |
| <i>RDR70–RDR77: 00FF8BH</i> |

Sets the initial value for the counter of each timer. Each counter loads the reload data set in this register and counts using it as the initial value. The reload data set in this register is loaded into the counter when "1" is written to PSETx, or when a counter underflow occurs. This register can also be read.

At initial reset, this register is set to "FFH".

CDR00-CDR07: 00FF34H CDR10-CDR17: 00FF35H CDR20-CDR27: 00FF3CH CDR30-CDR37: 00FF3DH CDR40-CDR47: 00FF84H CDR50-CDR57: 00FF85H CDR60-CDR67: 00FF8CH CDR70-CDR77: 00FF8DH

Sets the compare data for each timer. The timer compares the data set in this register with the corresponding counter data, and outputs the compare match signals when they are the same. The compare match signal controls the interrupt and the TOUT output waveform. This register can also be read. At initial reset, this register is set to "00H".

| <i>PTM00–PTM07: 00FF36H</i> |
|-----------------------------|
| <i>PTM10–PTM17: 00FF37H</i> |
| <i>PTM20–PTM27: 00FF3EH</i> |
| <i>PTM30–PTM37: 00FF3FH</i> |
| <i>PTM40–PTM47: 00FF86H</i> |
| <i>PTM50–PTM57: 00FF87H</i> |
| <i>PTM60–PTM67: 00FF8EH</i> |
| <i>PTM70–PTM77: 00FF8FH</i> |

The counter data of each timer can be read. Data can be read at any given time. However, in the 16-bit mode, reading PTM(L) does not latch the Timer(H) counter data in PTM(H). To avoid generating a borrow from Timer(L) to Timer(H), read the counter data after stopping the timer by writing "0" to PTRUN(L).

PTMx can only be read, so writing operation is invalid.

At initial reset, PTMx is set to "FFH".

| <i>PSET0: 00FF30H•D1</i> |
|--------------------------|
| <i>PSET1: 00FF31H•D1</i> |
| <i>PSET2: 00FF38H•D1</i> |
| <i>PSET3: 00FF39H•D1</i> |
| <i>PSET4: 00FF80H•D1</i> |
| <i>PSET5: 00FF81H•D1</i> |
| <i>PSET6: 00FF88H•D1</i> |
| <i>PSET7: 00FF89H•D1</i> |

Presets the reload data to the counter.

When "1" is written: Preset When "0" is written: Invalid Reading: Always "0"

Writing "1" to PSETx presets the reload data in the RDRx register to the counter of Timer x. When the counter of Timer x is in RUN status, the counter restarts immediately after presetting.

In the case of STOP status, the counter maintains the preset data.

No operation results when "0" is written. In the 16-bit mode, writing "1" to PSET(H) is invalid because 16-bit data is preset by PSET(L) only.

PSETx is only for writing, and it is always "0" during reading.

PTRUN0: 00FF30H•D2 PTRUN1: 00FF31H•D2 PTRUN2: 00FF38H•D2 PTRUN3: 00FF39H•D2 PTRUN4: 00FF80H•D2 PTRUN5: 00FF81H•D2 PTRUN6: 00FF88H•D2 PTRUN7: 00FF89H•D2

Controls the RUN/STOP of the counter.

When "1" is written: RUN When "0" is written: STOP Reading: Valid

The counter of Timer x starts down-counting by writing "1" to the PTRUNx register and stops by writing "0".

In STOP status, the counter data is maintained until it is preset or the counter restarts. When STOP status changes to RUN status, the counter resumes counting from the data maintained. In the 16-bit mode, the timers are controlled with the PTRUN(L) register, and the PTRUN(H) register is fixed at "0".

At initial reset, this register is set to "0" (STOP).

#### *PTOUT0: 00FF30H•D3 PTOUT1: 00FF31H•D3 PTOUT2: 00FF38H•D3 PTOUT3: 00FF39H•D3*

Controls the output of the TOUT signal.

When "1" is written:TOUT signal outputWhen "0" is written:DC outputReading:Valid

The PTOUTx is the output control register for the TOUTx signal (Timer x output clock). When PTOUT0 or PTOUT1 is set to "1", the TOUT0 or TOUT1 signal is output from the P20 port terminal. When PTOUT2 or PTOUT3 is set to "1", the TOUT2 or TOUT3 signal is output from the P21 port terminal. When "0" is set, P20/P21 is set for DC output.

At this time, settings of the I/O control register IOC20/IOC21 and data register P20D/P21D become invalid.

In the 16-bit mode, the timers are controlled with the PTOUT(H) register, and the PTOUT(L) register is fixed at "0".

At initial reset, this register is set to "0" (DC output).

Note: If PTOUT0 and PTOUT1 are set to "1" at the same time, PTOUT1 is effective. Similarly, if PTOUT2 and PTOUT3 are set to "1", PTOUT3 is effective. Furthermore, if the programmable timer is set in 16-bit mode, the TOUT0 and TOUT2 signals cannot be output.

#### *RPTOUT2: 00FF38H•D4 RPTOUT3: 00FF39H•D4*

Controls the output of the  $\overline{\text{TOUT}}$  signal.

When "1" is written:TOUT signal outputWhen "0" is written:DC outputReading:Valid

The RPTOUTx is the output control register for the TOUTx signal (Timer x inverted output clock). When RPTOUT2 or RPTOUT3 is set to "1", the TOUT2 or TOUT3 signal is output from the P23 port terminal. When "0" is set, P23 is set for DC output.

At this time, settings of the I/O control register IOC23 and data register P23D become invalid. In the 16-bit mode, the timers are controlled with the RPTOUT3 register, and the RPTOUT2 register is fixed at "0".

At initial reset, this register is set to "0" (DC output).

Note: If RPTOUT2 and RPTOUT3 are set to "1" at the same time, RPTOUT3 is effective.

### 13.10 Precautions

(1) The programmable timer actually enters into RUN or STOP status at the falling edge of the input clock after writing to the PTRUNx register. Consequently, when "0" is written to PTRUNx, the timer stops after counting once more (+1). PTRUNx is read as "1" until the timer actually stops.

Figure 13.10.1 shows the timing chart at the RUN/STOP control.

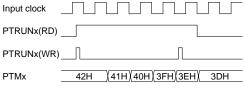



Fig. 13.10.1 Timing chart at RUN/STOP control

(2) When the SLP instruction is executed while the programmable timer is running (PTRUNx = "1"), the timer stops counting during SLEEP status. When SLEEP status is canceled, the timer starts counting. However, the operation becomes unstable immediately after SLEEP status is canceled. Therefore, when shifting to SLEEP status, stop the 16-bit programmable timer (PTRUNx = "0") prior to executing the SLP instruction.
Same as above, the TOUT signal output should be disabled (PTOUTx = "0") so that an unstable clock is not output to the clock output port

clock is not output to the clock output port terminal.

(3) In the 16-bit mode, reading PTM(L) does not latch the Timer(H) counter data in PTM(H). To avoid generating a borrow from Timer(L) to Timer(H), read the counter data after stopping the timer by writing "0" to PTRUN(L). (4) For the reason below, pay attention to the reload data write timing when changing the interval of the programmable timer interrupts while the programmable timer is running. The programmable timer counts down at the falling edge of the input clock and at the same time it generates an interrupt if the counter underflows. Then it starts loading the reload data to the counter and the counter data is determined at the next rising edge of the input clock (period shown in as ① in the figure).

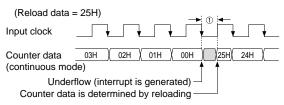



Fig. 13.10.2 Reload timing for programmable timer

To avoid improper reloading, do not rewrite the reload data after an interrupt occurs until the counter data is determined including the reloading period ①. Be especially careful when using the OSC1 (low-speed clock) as the clock source of the programmable timer and the CPU is operating with the OSC3 (high-speed clock).

# 14 WATCHDOG TIMER

# 14.1 Configuration of Watchdog Timer

The S1C88655 has a built-in watchdog timer that uses the OSC1 oscillation circuit as its clock source. The watchdog timer provides a mask option to select an overflow cycle or to disable the watchdog timer. The overflow signal can generate a nonmaskable interrupt (NMI) or CPU reset, this is also selectable by mask option

Figure 14.1.1 shows the block diagram of the watchdog timer.

When the watchdog timer is used, it must be reset periodically with software. If the watchdog timer is not reset within the selected overflow period, it generates a non-maskable interrupt or CPU reset to the CPU.

Place a watchdog timer reset routine at a path where the CPU executes periodically, such as a main loop or timer interrupt handler routine, to detect program runaway as if the watchdog timer reset routine is not executed.

The watchdog timer is active in HALT mode. Therefore, if HALT state continues for longer than the selected period, the CPU starts exception processing. The watchdog timer stops in SLEEP mode.

Note: The overflow cycle has an error of less than128/fosc1 seconds according to the watchdog timer reset timings.

# 14.2 Mask Option

The watchdog timer overflow cycle can be selected by mask option.

Watchdog timer overflow cycle D Not use 32768/foSC1 (1-sec cycle when fosc1 = 32 kHz) 65536/foSC1 (2-sec cycle when fosc1 = 32 kHz) 131072/foSC1 (4-sec cycle when fosc1 = 32 kHz)

When "Not use" is selected, the watchdog timer does not activate as no clock is supplied. In this case, the OSC1 oscillation circuit can be stopped by software control (see Chapter 8, "Oscillation Circuits").

When "32768/fosc1", "65536/fosc1", or "131072/ fosc1" is selected, the watchdog overflow cycle is configured to 1 second, 2 seconds or 4 seconds, respectively. In this case, the OSC1 oscillation circuit cannot be stopped by software control since the OSC1 clock is always required.

Furthermore, mask option allows selection of either NMI or CPU reset to be generated by the watchdog timer overflow signal.

Watchdog timer overflow signal Interrupt (NMI) Reset

When "Interrupt (NMI)" is selected, the watchdog timer overflow signal will be sent to the  $\overline{\text{NMI}}$  (level 4) input of the core CPU. This interrupt cannot be disabled and the  $\overline{\text{NMI}}$  exception occurs in priority over other interrupts. See the "S1C88 Core CPU Manual" for more information on the  $\overline{\text{NMI}}$ exception processing. The  $\overline{\text{NMI}}$  exception processing vector address is set at 000004H. The CPU reset signal resets only the CPU and does not initialize the peripheral circuit registers (see Chapter 5, "Initial Reset"). The reset exception processing vector address is set at 000000H.

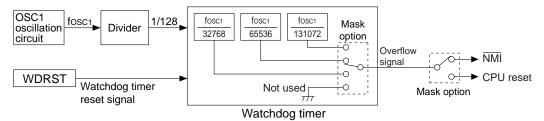



Fig. 14.1.1 Watchdog timer block diagram

### 14.3 Details of Control Register

Table 14.3.1 shows the control bit for the watchdog timer.

| Address | Bit | Name   |                   |                  | Function         |                                                  | 1     | 0            | SR | R/W | Comment             |
|---------|-----|--------|-------------------|------------------|------------------|--------------------------------------------------|-------|--------------|----|-----|---------------------|
| 00FF04  | D7  | FOUTON | FOUT ou           | itput con        | trol             |                                                  | On    | Off          | 0  | R/W |                     |
|         | D6  | FOUT2  | FOUT fr           | equency          | selection        |                                                  |       |              | 0  | R/W |                     |
|         |     |        | $\frac{FOUT2}{1}$ | FOUT1            | FOUT0            | Frequency<br>fosc3 / 8                           |       |              |    |     |                     |
|         | D5  | FOUT1  | 1<br>1<br>1       | 1<br>0<br>0      | 0<br>1<br>0      | fosc3 / 4<br>fosc3 / 2<br>fosc3 / 1              |       |              | 0  | R/W |                     |
|         | D4  | FOUT0  | 0<br>0<br>0<br>0  | 1<br>1<br>0<br>0 | 1<br>0<br>1<br>0 | fosc1 / 8<br>fosc1 / 4<br>fosc1 / 2<br>fosc1 / 1 |       |              | 0  | R/W |                     |
|         | D3  | -      | -                 |                  |                  |                                                  | -     | -            | _  | -   | Constantly "0" when |
|         | D2  | _      | _                 |                  |                  |                                                  | -     | -            | -  | _   | being read          |
|         | D1  | -      | -                 |                  |                  |                                                  | -     | -            | _  | -   |                     |
|         | D0  | WDRST  | Watchdo           | g timer r        | eset             |                                                  | Reset | No operation | _  | W   |                     |

Table 14.3.1 Watchdog timer control bit

#### WDRST: 00FF04H•D0

Resets the watchdog timer.

When "1" is written:Watchdog timer is resetWhen "0" is written:No operationReading:Constantly "0"

By writing "1" to WDRST, the watchdog timer is reset, after which it is immediately restarted. Writing "0" will mean no operation.

Since WDRST is for writing only, it is constantly set to "0" during readout.

### 14.4 Precautions

- When the watchdog timer is used, the software must reset it within the cycles selected by mask option.
- (2) Do not execute the SLP instruction for 2 msec after a  $\overline{\rm NMI}$  interrupt has occurred (when fosc1 is 32.768 kHz).

# 15 LCD DRIVER

# 15.1 Configuration of LCD Driver

The S1C88655 has a built-in dot matrix LCD driver that can drive an LCD panel with a maximum of 8,192 dots (128 segments  $\times$  64 commons). Figure 15.1.1 shows the configuration of the LCD driver and the drive power supply.

# 15.2 LCD Power Supply

The on-chip power supply circuit generates the LCD drive voltages  $V_{C1}$ - $V_{C5}$ . See Chapter 4, "Power Supply" for controlling the power supply circuit. Note that the LCD power supply should be turned ON in the procedure shown below (in the reverse order to turn OFF).

- 1. Turn the clock source for the display timing generator ON. (OSC1 oscillation circuit or programmable timer 5)
- 2. Turn the display timing generator ON.
- 3. Turn the supply voltage booster circuit ON.
- 4. Turn the VC5 voltage generator ON.
- 5. Turn the VC1-4 voltage generator ON.
- 6. Turn the LCD driver circuit ON.

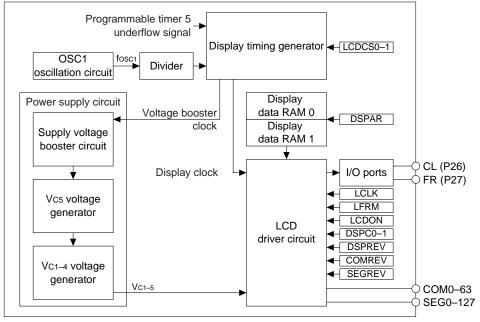



Fig. 15.1.1 Configuration of LCD driver

### 15.3 Display Timing Generator

### 15.3.1 Generating frame signal

This LCD driver has a display timing generator included to generate the LCD display clock and the supply voltage booster clock. The configuration of the circuit block is shown in Figure 15.3.1.1. The display timing generator control register LCDCS0–LCDCS1 is used to turn the circuit ON/ OFF and to select the source clock.

|        |        | 0 1 1 00             |
|--------|--------|----------------------|
| LCDCS1 | LCDCS0 | Source clock (fLCD)  |
| 1      | 1      | Programmable timer 5 |
|        |        | underflow signal     |
| 1      | 0      | fosc1/2              |
| 0      | 1      | fosc1/1              |
| 0      | 0      | OFF                  |

Setting LCDCS0–LCDCS1 to "00" stops supplying the clock to the display timing generator, as a result the display timing generator stops outputting the voltage booster and display clocks. When a source clock (fLCD) is selected, the display timing generator starts generating the voltage booster and display clocks. The source clock can be selected from the OSC1 divided clocks (fosc1/1, fosc1/2) or the underflow signal of the programmable timer 5. When the LCDON register is set to "1", the LCD driver divides the display clock to generate the CL

and FR signals. The display clock frequency fCL and the frame frequency fFR can be expressed by the following equation,

 $f_{CL} = f_{LCD}/8$  $f_{FR} = f_{CL}/64 = f_{LCD}/512$ 

where fLCD represents the frequency of the selected source clock.

The following shows the frame frequency when an OSC1 divided clock is selected as the source clock (when fosc1 = 32.768 kHz): 64 Hz when fosc1/1 is selected 32 Hz when fosc1/2 is selected

Use of the programmable timer 5 allows fine adjustment of the frame frequency. See Section 13.8, "Setting Clock for LCD Driver Display Timing Generator", for setting the programmable timer. fFR represents a frame frequency and the LCD alternating signal (FR) cycle is two frames, so the FR signal cycle is fFR/2.

Setup fFR to approximately 60 to 80 Hz as a guide.

The LCD driver circuit generates 1/64 duty LCD drive waveforms as shown in Figure 15.3.1.2 based on the timing generated by the display timing generator.

Note: The display timing generator also outputs the voltage booster clock to generate the LCD drive voltages. Therefore, be sure to select a source clock before turning the onchip power supply circuit ON.

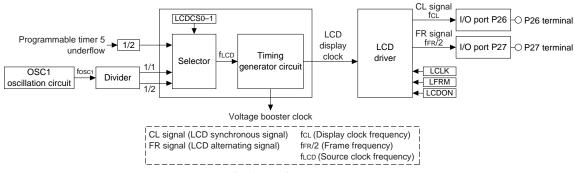



Fig. 15.3.1.1 Display timing generator

COM0 -

1 -

3 -

4

5

6

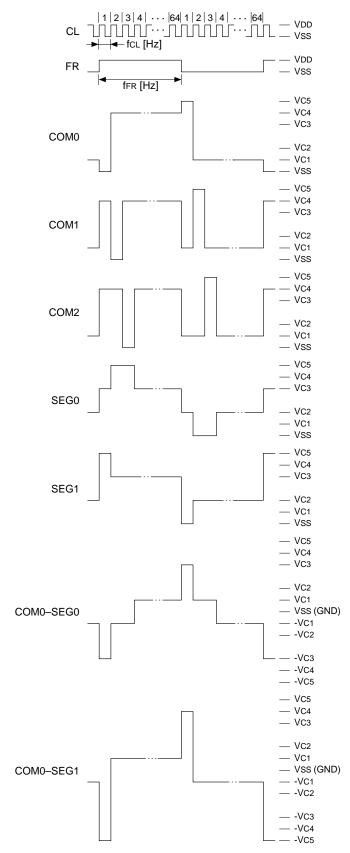
7 -

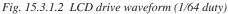
8 -

9 -

10 -

11 -


12 -


13 -

14 -

SEG0

 $\sim 0.4$ 





### 15.3.2 CL, FR signal outputs

The CL signal (LCD synchronous clock) and FR signal (LCD alternating signal) that are generated by the display timing generator can be output externally from the P26 and P27 port terminals, respectively. This makes it possible to monitor the fCL and fFR settings.

The LCLK register is used for output control of the CL signal (source clock selected using LCDCS).

When LCLK is set to "1", the CL signal is output from the P26 terminal.

The LFRM register is used for output control of the FR signal. When LFRM is set to "1", the FR signal is output from the P27 terminal.

Figure 15.3.2.1 shows the output waveforms of the CL and FR signals.

Since these signals are generated asynchronously with the LCLK and LFRM registers, hazard may occur on the waveforms when the signal is turned ON/OFF using the register.

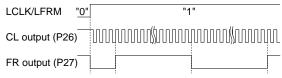



Fig. 15.3.2.1 CL and FR signal output waveforms

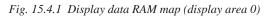
When LCLK or LFRM is set to "1", the data register (P26D, P27D) and I/O control register (IOC26, IOC27) of the I/O port P26 or P27 are not effective. When LCLK or LFRM is set to "0", the P26 or P27 terminal functions as an I/O port.

Note: The LCDON register must be set to "1" to generate the CL and FR signals.

### 15.4 Display Data RAM

The S1C88655 has a built-in 2K-byte display data RAM (8192 bits per screen  $\times$  2). The display data RAM is allocated to address E000H–EF7FH.

Two screen areas are reserved in the display data RAM and the area to be displayed can be selected using the display data RAM area select register DSPAR. When "0" is written to DSPAR, display area 0 is selected and when "1" is written, display area 1 is selected.


The memory allocation for the SEG and COM terminals can be reversed using the SEGREV and COMREV registers, respectively.

The correspondence between the display data RAM bits and the common/segment terminals are shown in Figures 15.4.1 and 15.4.2.

When "1" is written to the display data RAM bit, the corresponding dot on the LCD panel goes ON and when "0" is written, it goes OFF. Since display data RAM is designed to permit reading/writing, it can be controlled in bit units by logical operation instructions and other means (read, modify and write instructions).

Even when external memory has expanded into the display data RAM area, this area is not released to external memory. Access to this area is always via display data RAM.

| Address                     | D7 D     | 6 D5 |    | 0H<br>4 D3 | D2  | D1       | D٥   | D7       | D6      | D5        | D4    | D3   | D2       | D1        | D0  |       | D7  | D6  | D5             | D4 I | 03 D2 | 2 D1    | D0               | D7 I            | D6   | D5 D | )4 D  | 3 D'    | 2 D'  | 1 D0 | (normal)*3 | (reverse       |
|-----------------------------|----------|------|----|------------|-----|----------|------|----------|---------|-----------|-------|------|----------|-----------|-----|-------|-----|-----|----------------|------|-------|---------|------------------|-----------------|------|------|-------|---------|-------|------|------------|----------------|
| 00E00xH                     | 010      | 5 05 |    | . 53       | 52  |          | 50   |          | 00      | 100       | 04    | 53   | 52       |           | 50  |       | 51  | 20  | 55             |      |       |         | 00               | 51              |      |      |       |         |       |      | 0          | (reverse<br>63 |
| 00E01xH                     |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      | -     |         |                  |                 | -    |      |       | +       | +     |      | 1          | 62             |
| 00E02xH                     |          | -    | +  |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      | +     |         |                  |                 | -    | -    |       | +       | +     |      | 2          | 61             |
| 00E03xH                     |          |      |    |            |     |          |      |          |         |           |       |      |          |           | -   |       |     |     | -              |      | +     |         |                  |                 | +    | -    | _     | +       | +     | _    | 3          | 60             |
| 00E04xH                     |          |      |    |            |     |          |      |          | +       |           |       |      |          |           | -   |       |     |     | -              | -    | +     |         |                  | _               | -    | -    | _     | +       | +     | _    | 4          | 59             |
| 00E05xH                     |          | -    | +  | _          |     |          |      | -        | -       |           | -     |      |          |           | -   |       |     |     | -              | _    | +     |         |                  |                 | +    | -    | _     | +       | +     | _    | 5          | 58             |
| 00E06xH                     |          |      |    |            |     |          |      | -        | -       |           |       |      |          |           | _   |       |     |     | -              |      | -     |         |                  |                 | -    | -    | _     | +       | +     | _    | 6          | 57             |
| 00E00xH                     |          |      |    | _          |     |          |      | -        | -       | -         |       |      |          |           | _   |       |     |     | -              |      | -     |         |                  |                 | -    | -    |       | +       | +     | -    | 7          | 56             |
| 00E07xH                     |          |      |    |            |     | -        |      | -        | -       |           | -     | -    |          |           | _   |       |     |     | _              |      | -     | -       |                  |                 | -    | _    |       | +       | +     | _    |            |                |
|                             |          |      |    |            |     |          |      | -        | -       |           | -     |      |          |           | _   |       |     |     | _              |      | _     |         |                  |                 | _    |      | _     | +       | -     |      | 8          | 55             |
| DOE09xH                     |          | _    |    |            |     | -        |      |          |         |           | -     |      |          |           | _   |       |     |     |                |      | _     |         |                  |                 | _    |      |       | +       | +     | _    | 9          | 54             |
| 0E0AxH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           | _   |       |     |     | _              |      | _     |         |                  |                 | _    | _    |       | +       | _     | _    | 10         | 53             |
| 0E0BxH                      |          |      |    | _          |     |          |      |          |         |           |       |      |          |           |     | • • • |     |     |                |      |       |         |                  |                 | _    |      |       | +       | +     | _    | 11         | 52             |
| 0E0CxH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     | • • • |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 12         | 51             |
| 0E0DxH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     | • • • |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 13         | 50             |
| 0E0ExH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 14         | 49             |
| 0E0FxH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     | • • • |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 15         | 48             |
| 0E10xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 16         | 47             |
| 0E11xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      |      |       |         | Т     |      | 17         | 46             |
| 0E12xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      | T     |         |                  |                 |      |      |       | Τ       | T     |      | 18         | 45             |
| 0E13xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     | -              |      |       |         |                  |                 |      |      |       |         |       |      | 19         | 44             |
| 0E14xH                      |          |      |    |            |     |          |      |          |         |           | 1     |      |          |           |     |       |     |     | -              |      |       |         |                  |                 |      |      |       |         |       |      | 20         | 43             |
| 0E15xH                      |          |      |    |            |     |          | 1    | 1        |         | 1         | 1     | 1    |          |           |     |       | 1   |     | +              |      |       |         |                  |                 |      |      |       | 1       | 1     |      | 21         | 42             |
| 0E16xH                      |          |      |    |            |     | 1        |      | 1        |         |           | 1     |      |          |           |     |       |     |     | +              | +    |       | -       |                  |                 | +    |      | +     | 1       | 1     |      | 22         | 41             |
| 0E17xH                      |          |      |    | +          |     |          | 1    | 1        | 1       | 1         | 1     | 1    |          |           |     |       |     |     | +              | +    | +     | +       |                  |                 | +    |      | +     | +       | +     | 1    | 23         | 40             |
| 0E18xH                      |          |      |    | +          |     |          | 1    | 1        |         | $\square$ | 1     | 1    |          |           |     |       |     |     | +              |      | +     | +       | $\square$        |                 | +    | +    | +     | +       | +     | +    | 24         | 39             |
| 0E19xH                      |          |      |    |            |     | -        |      | -        | -       |           | -     |      |          |           | -   |       |     |     | -              | -    | +     |         |                  |                 | +    | -    | _     | +       | +     | -    | 25         | 38             |
| 0E1AxH                      |          | -    |    |            |     | +        |      | -        | -       |           | -     |      |          |           | -   |       |     |     | -              | _    | +     |         |                  |                 | +    | -    | _     | +       | +     | _    | 26         | 37             |
| 0E1BxH                      |          | -    |    |            |     | +        |      | -        | -       |           | -     |      |          |           | -   |       |     |     | -              |      | +     |         |                  |                 | +    | -    | _     | +       | +     | _    | 20         | 36             |
| 0E1CxH                      |          | _    |    |            |     | -        |      | -        | -       |           | -     | -    |          |           | _   |       |     |     |                |      | _     |         |                  |                 | -    | _    |       | +       | +     |      | 28         | 35             |
| 0E1CxH<br>0E1DxH            |          | _    |    |            |     | -        |      |          | -       |           | -     | +    |          |           |     |       | I   |     | 1              |      | _     | _       |                  |                 | _    | _    | _     | -       | _     | _    |            |                |
| -                           |          |      |    | _          |     |          |      | -        | -       |           | -     | +    | Di       | sn        | la  | y a   | re  | a   | Ω              | _    | _     |         |                  |                 | _    |      | _     | -       | -     |      | 29         | 34             |
| 0E1ExH                      |          |      |    | _          |     |          |      |          |         |           | -     | 1    |          | Sp        | na  | -     |     | a   | U              | _    |       |         |                  |                 | _    |      |       | +       | _     | _    | 30         | 33             |
| 0E1FxH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      | _     |         |                  |                 | _    |      |       | +       | +     | _    | 31         | 32             |
| 0E20xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     | • • • |     |     |                |      | _     |         |                  |                 |      |      |       | $\perp$ |       |      | 32         | 31             |
| 0E21xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     | • • • |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 33         | 30             |
| 0E22xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 34         | 29             |
| 0E23xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     | • • • |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 35         | 28             |
| 0E24xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 36         | 27             |
| 0E25xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 37         | 26             |
| 0E26xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 38         | 25             |
| 0E27xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 39         | 24             |
| 0E28xH                      |          | -    |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      | -     |         |                  |                 |      |      |       | +       | +     |      | 40         | 23             |
| 0E29xH                      |          | -    | +  |            |     | $\vdash$ |      |          |         |           | 1     |      |          |           |     |       |     |     |                |      | +     |         |                  |                 | +    |      |       | +       | +     |      | 41         | 22             |
| 0E2AxH                      |          | -    | +  |            |     | -        |      |          |         |           | -     |      |          |           | -   |       |     |     | -              |      | -     |         |                  |                 | -    |      |       | +       | +     |      | 42         | 21             |
| 0E2BxH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           | _   |       |     |     | -              |      |       |         |                  |                 | -    |      |       | +       | +     |      | 43         | 20             |
| 0E2CxH                      |          | +    | +  | +          | -   | -        | +    | 1        | -       | 1         | 1     | +    |          | $\vdash$  | -   |       | -   |     | +              | +    | +     | +       | $\square$        | $\vdash$        | +    |      | +     | +       | +     | +    | 43         | 19             |
| 0E2CXH                      |          | +    | +  | +          | -   | +        | 1    | +        | +       | -         | +     | -    | $\vdash$ | $\square$ | -   |       | -   |     | +              | +    | +     | +       | $\left  \right $ | $\vdash$        | +    | +    | +     | +       | +     | -    | 44         | 19             |
| 0E2DXH                      | +        | +    | +  | +          | -   | -        | -    | +        | -       | -         | -     | +    |          | $\vdash$  | -   |       | -   |     | +              | -    | +     | +       | $\left  \right $ | +               | +    | +    | +     | +       | +     | +    | 45<br>46   | 18             |
|                             | +        |      | +  | -          | -   | +        | -    | -        | -       | -         | +     | +    |          |           | _   | • • • | -   |     | -              | -    | +     |         |                  | $\vdash$        | -    |      | +     | +       | +     | _    | -          |                |
| 0E2FxH                      | +        | -    | +  | -          | -   | -        | -    | -        | -       | -         | -     | -    |          |           | _   | • • • |     |     | $\rightarrow$  |      | +     | +       |                  |                 | _    |      |       | +       | +     | _    | 47         | 16             |
| 0E30xH                      | ++       | _    | +  | +          | -   | -        | -    | -        | -       | -         | -     | -    |          |           | _   | • • • | -   |     | $\rightarrow$  | _    | +     | -       |                  | $ \rightarrow $ | -+   |      | +     | +       | +     | -    | 48         | 15             |
| 0E31xH                      | $\vdash$ | _    | 1  | -          | -   | -        | -    | 1        | -       | 1         | 1     | -    |          |           |     |       | L   |     |                |      |       | _       |                  |                 | _    |      | _     | -       | _     | _    | 49         | 14             |
| 0E32xH                      |          |      | -  |            |     | -        |      | <u> </u> |         | 1         | 1     | -    |          |           |     |       |     |     | $ \rightarrow$ |      |       | _       |                  |                 |      |      | _     | _       | _     | _    | 50         | 13             |
| 0E33xH                      |          |      |    | 1          |     |          |      | <u> </u> |         | 1         | 1     |      |          |           |     | • • • |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 51         | 12             |
| 0E34xH                      |          |      |    |            |     |          |      |          |         | 1         |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 52         | 11             |
| 0E35xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 53         | 10             |
| 0E36xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      |      |       |         |       |      | 54         | 9              |
| 0E37xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     | J              |      |       |         |                  |                 |      |      |       |         |       |      | 55         | 8              |
| 0E38xH                      |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                | T    | T     | T       |                  |                 |      |      | Т     | T       | T     |      | 56         | 7              |
| 0E39xH                      |          |      | 1  |            |     |          |      | 1        |         |           |       |      |          |           |     |       |     |     | 1              |      |       |         |                  |                 |      |      |       |         |       |      | 57         | 6              |
| 0E3AxH                      |          |      | 1  | 1          |     | 1        | 1    | 1        |         | 1         | 1     | 1    |          |           |     |       |     |     | -              |      |       |         |                  |                 |      |      | T     | 1       |       |      | 58         | 5              |
| 0E3BxH                      |          | +    | 1  | +          |     |          | 1    | 1        | 1       | 1         | 1     | 1    |          |           |     |       |     |     | +              | +    | +     |         |                  |                 | +    |      | +     | +       | +     |      | 59         | 4              |
| 0E3CxH                      |          | +    | +  | +          |     | 1        |      | 1        | 1       | 1         | 1     | 1    |          |           |     |       | -   |     | +              |      | +     | +       |                  |                 | +    | +    | +     | +       | +     | +    | 60         | 3              |
| 0E3DxH                      |          | +    | +  | +          | -   | -        | 1    | +        | +       | 1         | +     | +    |          |           | -   |       | -   |     | +              | -    | +     | +       | $\left  \right $ | +               | +    | +    | +     | +       | +     | -    | 61         | 2              |
| 0E3ExH                      |          | +    | +  | +          | -   | +        | -    | +        | +       | -         | +     | +    |          |           | -   |       | -   |     | +              | -    | +     | +       | $\left  \right $ | +               | +    | +    | +     | +       | +     | -    | 62         | 1              |
| 0E3EXH                      | +        | +    | +  | +          | -   | -        | -    | +        | +       | -         | -     | -    |          |           | -   |       | -   |     | $\rightarrow$  | -+   | +     | +       |                  | $\vdash$        | +    | -    | +     | +       | +     | -    |            |                |
|                             |          | 0    | _  | 4          | 1   | -        | 7    | 0        | -       | 40        | 44    | 40   | 10       | 1.4       | 15  |       | 140 | 140 | 44.4           | 1474 | 1044  | 7 4 4 1 | 140              | 100             | 1244 | 004  | 2240  | 440     | E 4 0 | 6407 | 63         | 0              |
| G(normal)*1<br>G(reverse)*2 |          |      |    |            |     |          |      |          |         |           |       |      |          |           |     |       |     |     |                |      |       |         |                  |                 |      | 5 4  |       | 412     |       |      |            |                |
| ¬reverse1*2                 | 112/112  | 0125 | 12 | 4123       | 122 | g121     | 1120 | лт 19    | 111 I B | 111/      | 11.16 | 1114 | 114      | u 1311    | 112 |       | 115 | 14  | 1.31           | 1/11 | 1111  | 1 4     | 1 8              | 1               | n I  | 2 4  | a 1 3 | -1-2    | 1 1   | 0    | 1          |                |



#### 15 LCD DRIVER

| Address                     |     |     |     |          | ЭН   |      |      |     |               |    |     |     | -        | Н        |       |       |       |          |     |          |          | E   |     |     |          |     |     |     |     | F   |     |     |          |          | COM        | CON     |
|-----------------------------|-----|-----|-----|----------|------|------|------|-----|---------------|----|-----|-----|----------|----------|-------|-------|-------|----------|-----|----------|----------|-----|-----|-----|----------|-----|-----|-----|-----|-----|-----|-----|----------|----------|------------|---------|
|                             | D7  | D6  | D5  | D4       | l D3 | 3 D2 | 2 D' | 1 C | 00 [          | D7 | D6  | D5  | D4       | D3       | D2    | D1    | D0    |          | D7  | D6       | D5       | D4  | D3  | D2  | D1       | D0  | D7  | D6  | D5  | D4  | D3  | D2  | D1       | D0       | (normal)*3 | (revers |
| 00E80xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 0          | 63      |
| 00E81xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 1          | 62      |
| 00E82xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 2          | 61      |
| 00E83xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 3          | 60      |
| 00E84xH                     |     | -   |     |          |      |      |      |     |               | -  |     |     |          |          |       |       | +     |          | -   | +        |          |     |     |     | -        |     |     | _   |     |     |     |     | -        |          | 4          | 59      |
| 00E85xH                     |     | _   |     | -        | +    | -    |      | +   | +             | _  |     |     | -        | -        | -     |       | -     |          |     | -        |          |     |     |     | -        |     |     |     |     |     |     |     | -        |          | 5          | 58      |
|                             |     |     |     |          |      |      |      | +   | +             | _  |     |     |          |          |       |       |       |          |     | -        |          |     |     |     | <u> </u> |     |     |     |     |     |     |     |          |          |            |         |
| 00E86xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 6          | 57      |
| 00E87xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 7          | 56      |
| 00E88xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 8          | 55      |
| 00E89xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 9          | 54      |
| 00E8AxH                     |     |     |     |          |      |      | +    | +   | +             |    |     |     | +        | 1        |       | +     | -     |          |     | -        |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 10         | 53      |
| 00E8BxH                     |     |     |     |          |      |      | +    | +   | +             | -  |     |     | -        | +        | -     | +     | -     |          | -   | +        |          | -   |     |     | -        |     |     |     |     |     |     |     | -        |          | 10         | 52      |
|                             |     |     |     |          | -    | _    | +    | +   | -             | _  |     |     | -        | -        | _     | -     | -     | -        | _   | -        |          |     |     |     |          |     |     |     |     |     |     |     | -        |          |            |         |
| 00E8CxH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 12         | 51      |
| 00E8DxH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 13         | 50      |
| 00E8ExH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 14         | 49      |
| 00E8FxH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 15         | 48      |
| 00E90xH                     |     |     |     |          |      |      | +    | +   |               |    |     |     |          | 1        |       |       |       |          |     | -        |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 16         | 47      |
| 00E91xH                     |     |     |     |          |      |      | +    | +   | +             | -  |     |     | -        | -        |       | +     | -     |          |     | -        |          | -   |     |     |          |     |     |     |     |     |     |     | -        |          | 17         | 46      |
|                             |     | _   |     | +        | +    | +    | +    | +   | +             | -  | -   | -   | +        | -        | -     | -     | +     | <u> </u> | +   | -        | -        |     | -   |     | -        | -   |     | -   | -   |     | -   | -   | -        |          |            |         |
| 00E92xH                     |     |     |     |          | -    | -    | +    | +   | +             |    |     |     | -        | -        | -     | 1     | -     |          | -   | -        |          |     |     |     | -        | -   |     |     |     |     |     |     | -        |          | 18         | 45      |
| 00E93xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 19         | 44      |
| 00E94xH                     |     |     |     |          |      | 1    |      |     |               |    |     |     | L        |          |       |       |       |          |     |          |          |     |     |     |          | L   |     |     |     |     |     |     |          |          | 20         | 43      |
| 00E95xH                     |     |     |     |          |      |      |      |     |               |    |     |     | [        |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 21         | 42      |
| 00E96xH                     |     |     | _   |          | 1    | 1    | 1    | +   | +             |    |     | -   | 1        | 1        | 1     | 1     | 1     |          | 1   | 1        |          |     | -   | -   |          | 1   |     |     |     |     | -   |     | 1        |          | 22         | 41      |
| 00E97xH                     |     |     |     | -        | +    | +    | +    | +   | +             | -  |     |     | 1        | -        | +     | 1     | -     |          | 1   | -        |          |     |     |     | -        | -   |     | -   |     |     |     |     | -        |          | 23         | 40      |
|                             |     |     |     |          | +    | -    | +    | +   | +             | _  |     | -   | -        | -        | -     | -     | -     | <u> </u> | -   | -        |          |     |     |     | -        | -   |     | -   |     |     |     | -   | -        |          |            | -       |
| DOE98xH                     |     |     |     |          |      | -    | -    | +   | +             |    |     |     | 1        | -        | -     | -     | -     |          | -   | -        |          |     |     |     | <u> </u> | -   |     |     |     |     |     |     |          |          | 24         | 39      |
| DOE99xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 25         | 38      |
| DOE9AxH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 26         | 37      |
| DOE9BxH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 27         | 36      |
| 00E9CxH                     |     |     |     |          |      |      | +    | +   |               |    |     |     |          | 1        |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 28         | 35      |
| 00E9DxH                     |     |     |     |          |      |      | -    | +   | -             |    |     |     |          | +        | i.    | ·     | · .   |          |     |          |          | -   |     |     | -        |     |     |     |     |     |     |     | -        |          | 29         | 34      |
|                             |     |     |     |          |      |      | _    | _   | _             |    |     |     |          | <u> </u> | D     | icı   | als   | ay a     | arc | 2        | 1        | _   |     |     |          |     |     |     |     |     |     |     |          |          |            |         |
| DOE9ExH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       | 13    |       | ay c     |     | a        |          | _   |     |     |          |     |     |     |     |     |     |     |          |          | 30         | 33      |
| D0E9FxH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          | 1     | 1     |       |          | 1   | 1        |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 31         | 32      |
| DOEA0xH                     |     |     |     |          |      |      | Τ    | Т   |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 32         | 31      |
| 00EA1xH                     |     |     |     |          |      |      | +    | +   |               |    |     |     |          |          |       |       |       |          |     | -        |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 33         | 30      |
| DOEA2xH                     |     |     |     |          |      |      | +    | +   | +             |    |     |     | -        | +        |       | -     | -     |          |     | +        |          | -   |     |     | -        |     |     |     |     |     |     |     |          |          | 34         | 29      |
|                             |     |     |     |          |      | _    | +    | +   | +             | _  |     |     | -        | -        | -     | +     | -     |          |     | -        |          |     |     |     | -        |     | _   |     |     |     |     |     | -        |          | 35         | 28      |
| DOEA3xH                     |     |     |     |          |      |      | _    | _   | _             |    |     |     |          |          |       | _     |       | -        |     | <u> </u> |          |     |     |     |          |     |     |     |     |     |     |     |          |          |            |         |
| 00EA4xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 36         | 27      |
| 00EA5xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 37         | 26      |
| 00EA6xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 38         | 25      |
| 00EA7xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 39         | 24      |
| 00EA8xH                     |     | -   |     | +        | +    |      | +    | +   | +             |    |     |     | -        | +        | -     | +     | -     |          |     | -        |          |     |     |     | -        |     |     |     |     |     |     |     |          |          | 40         | 23      |
|                             |     | _   |     | +        | +    | _    | +    | +   | +             | _  |     |     | -        | +        | -     | +     | -     |          | -   | -        |          | _   |     |     | -        |     |     |     |     |     |     |     | -        |          | 40         | 22      |
| DOEA9xH                     |     | _   |     | -        | +    |      | -    | +   | +             |    |     |     |          | -        |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          |            |         |
| 00EAAxH                     |     |     |     |          | 1    | _    |      |     |               |    |     |     | <u> </u> |          | _     | 1     |       |          | 1   |          |          |     |     |     |          |     |     |     |     |     |     |     | <u> </u> |          | 42         | 21      |
| 00EABxH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 43         | 20      |
| 0EACxH                      |     |     |     |          |      |      | T    |     | T             |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 44         | 19      |
| 0EADxH                      |     |     |     |          |      |      |      | +   |               |    |     |     |          |          | 1     | 1     |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 45         | 18      |
| 0EAExH                      |     |     |     | $\vdash$ | +    | +    | +    | +   | +             |    |     |     | 1        | 1        | 1     | 1     | 1     |          | 1   | 1        |          |     | -   |     |          | -   |     | -   |     |     | -   |     | -        |          | 46         | 17      |
|                             |     | _   |     | +        | +    | +    | +    | +   | +             | _  | -   | -   | +        | +        | +     | +     | +     |          | +   | +        |          | _   | -   |     | -        | -   |     | -   | -   |     | -   | -   | -        | $\vdash$ | 40         | 16      |
| 0EAFxH                      |     |     |     | 1        | +    | -    | +    | +   | +             | _  |     | -   | -        | -        | -     | -     | -     |          | -   | -        |          |     |     |     | -        | -   |     |     |     |     |     |     | -        |          |            |         |
| 00EB0xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 48         | 15      |
| 00EB1xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 49         | 14      |
| 0EB2xH                      |     |     |     | 1        |      |      |      | Γ   | Τ             |    |     |     | 1        |          |       | 1     |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 50         | 13      |
| 00EB3xH                     |     |     |     | 1        | 1    |      | 1    | +   | +             |    |     |     |          |          |       | 1     |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 51         | 12      |
| 0EB4xH                      |     |     |     | 1        | +    | +    | +    | +   | +             |    |     | -   | 1        | 1        | 1     | 1     | 1     |          | 1   | 1        |          |     |     |     |          |     |     |     |     |     |     | -   |          |          | 52         | 11      |
|                             |     | _   |     | +        | +    | +    | +    | +   | +             | -  | -   | -   | +        | +        | +     | +     | +     |          | +   | +        | $\vdash$ |     | -   |     | -        | -   |     | -   | -   |     | -   | -   | -        | $\vdash$ | 53         | 10      |
| 00EB5xH                     |     |     |     | 1        | +    | -    | +    | +   | +             | _  |     | -   | -        | -        | -     | -     | -     |          | -   | -        |          |     | -   |     | -        | -   |     |     |     |     |     |     | -        |          |            |         |
| 00EB6xH                     |     |     |     | 1        | 1    |      |      |     |               |    |     |     | 1        |          |       | 1     |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 54         | 9       |
| 00EB7xH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 55         | 8       |
| 00EB8xH                     |     |     |     |          |      | T    | T    | T   | T             |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 56         | 7       |
| 00EB9xH                     |     |     |     | 1        | 1    |      | 1    | +   | +             |    |     |     | 1        |          | 1     | 1     |       |          | 1   | 1        |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 57         | 6       |
| 00EBAxH                     |     |     |     | 1        | +    | +    | +    | +   | +             |    |     | -   | 1        | 1        | 1     | 1     | 1     |          | 1   | 1        |          |     | -   |     |          | 1   |     |     |     |     |     | -   |          |          | 58         | 5       |
|                             |     | _   |     | -        | +    | -    | +    | +   | +             | _  |     | -   | -        | -        | -     | -     | -     |          | -   | -        |          |     |     |     | -        | -   |     |     |     |     |     | -   | -        |          |            |         |
| 00EBBxH                     |     |     |     | 1        | +    | -    | +    | +   | $\rightarrow$ |    |     |     | -        | -        | -     | 1     | -     |          |     | -        |          |     |     |     | <u> </u> | -   |     |     |     |     |     |     | -        |          | 59         | 4       |
| 00EBCxH                     |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       | L     |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 60         | 3       |
| 00EBDxH                     |     |     |     |          |      | T    | T    | T   | T             |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 61         | 2       |
| 00EBExH                     |     |     |     | 1        | 1    | 1    | 1    | +   | +             |    |     |     | 1        |          | 1     | 1     |       |          | 1   |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | 62         | 1       |
| DOEBFxH                     |     | -   |     | $\vdash$ | +    | +    | +    | +   | +             | -  |     | -   | 1        | 1        | 1     | 1     | 1     |          | 1   | -        |          |     | -   |     |          | 1   |     |     |     |     |     | -   |          |          | 63         | 0       |
|                             | 0   | 1   | 0   | 2        | 1    | F    | -    | +   | 7             | 0  | 0   | 10  | 4.4      | 10       | 40    | 4.4   | 15    |          | 140 | 140      | 114      | 115 | 110 | 147 | 140      | 140 | 100 | 104 | 100 | 100 | 104 | 100 | 100      | 107      |            | 0       |
| G(normal)*1<br>G(reverse)*2 |     |     |     |          |      |      |      |     |               |    |     |     |          |          |       |       |       |          |     |          |          |     |     |     |          |     |     |     |     |     |     |     |          |          | ł          |         |
|                             | 127 | 126 | 125 | 124      | 412  | 312  | 2 12 | 111 | 201           | 19 | 118 | 117 | 1116     | n 15     | 01114 | HT 13 | มา 12 | 1        | 115 | 114      | 13       | 12  | 111 | 10  | . Ч      | 18  | 1   | b   | 5   | 4   | - 3 | 12  | 11       | I ()     | 1          |         |

Fig. 15.4.2 Display data RAM map (display area 1)

# 15.5 Display Control

The display status by the built-in LCD driver and the contrast can be controlled with software. The LCD display status can be selected by the LCD display control registers DSPC0 and DSPC1. Relationship between the register values and display statuses is shown in Table 15.5.1.

| Table 15.5.1 LCD display cont |
|-------------------------------|
|-------------------------------|

|       |       | 1 2            |
|-------|-------|----------------|
| DSPC1 | DSPC0 | LCD display    |
| 1     | 1     | All dots ON    |
| 1     | 0     | All dots OFF   |
| 0     | 1     | Normal display |
| 0     | 0     | Display OFF    |

### Display ON/OFF

When DSPC0–DSPC1 are set to "01", the LCD drive waveforms are output from the COM and SEG terminals. When DSPC0–DSPC1 are set to "00", the COM and SEG terminals output Vss (GND), as a result the display turns OFF. At initial reset, display is turned OFF (DSPC0–DSPC1 = "00").

### All dots ON

When DSPC0–DSPC1 are set to "11", all the dots on the LCD panel are lit with dynamic drive. In this case, all the SEG terminals output an ON waveform (VC5 or VSS). This software control does not affect the contents of the display data RAM.

### All dots OFF

When DSPC0–DSPC1 are set to "10", all the dots on the LCD panel go out with dynamic drive. In this case, all the SEG terminals output an OFF waveform (VC3 or VC2) and all the COM terminals output an OFF waveform (VC4 and VC1). This software control does not affect the contents of the display data RAM.

### Reverse display

The display on the LCD panel in normal display mode (DSPC0–DSPC1 = "01") can be reversed (black pixels are turned white and vice versa) by setting the reverse display control register DSPREV to "0". Normal screen appears when DSPREV = "1". This software control does not affect the contents of the display data RAM. At initial reset, reverse display is disabled (DSPREV = "1").

If reverse display (DSPREV = "0") and all dots ON (DSPC0–DSPC1 = "11") are specified simultaneously, the display is reversed (all dots are lit).

If reverse display (DSPREV = "0") and all dots OFF (DSPC0-DSPC1 = "10") are specified simultaneously, the display is not reversed (all dots go out).

### Contrast adjustment

The LCD contrast can be adjusted by controlling the VC5 voltage in the power supply circuit. See Chapter 4, "Power Supply", for controlling VC5 and Chapter 19, "Electrical Characteristics", for adjustable range of the LCD drive voltage.

### 15.6 Details of Control Registers

Table 15.6.1 shows the LCD driver control bits.

| Table 15.6.1 | LCD driver | control bits |
|--------------|------------|--------------|
|--------------|------------|--------------|

| Address | Bit | Name   | Function                                                                | 1              | 0              | SR | R/W | Comment             |
|---------|-----|--------|-------------------------------------------------------------------------|----------------|----------------|----|-----|---------------------|
| 00FF08  | D7  | LCLK   | CL output control                                                       | On             | Off            | 0  | R/W |                     |
|         | D6  | LFRM   | FR output control                                                       | On             | Off            | 0  | R/W |                     |
|         | D5  | SEGREV | SEG output assignment control                                           | Normal         | Reverse        | 1  | R/W |                     |
|         | D4  | COMREV | COM output assignment control                                           | Normal         | Reverse        | 1  | R/W |                     |
|         | D3  | DSPAR  | LCD display data RAM area selection                                     | Display area 1 | Display area 0 | 0  | R/W |                     |
|         | D2  | DSPREV | Reverse display control                                                 | Normal         | Reverse        | 1  | R/W |                     |
|         | D1  | DSPC1  | LCD display control <u>DSPC1</u> <u>DSPC0</u> 1     1       All dots on |                |                | 0  | R/W |                     |
|         | D0  | DSPC0  | 10All dots off01Normal display00Display off                             |                |                | 0  | R/W |                     |
| 00FF09  | D7  | -      | _                                                                       | -              | -              | -  | -   | "0" when being read |
|         | D6  | LCDON  | LCD driver circuit On/Off control                                       | On             | Off            | 0  | R/W |                     |
|         | D5  | LBIAS  | LCD bias selection                                                      | 1/9 bias       | 1/7 bias       | 1  | R/W |                     |
|         | D4  | VCON   | Vc1-4 voltage generator On/Off control                                  | On             | Off            | 0  | R/W |                     |
|         | D3  | VC5ON  | Vc5 voltage generator On/Off control                                    | On             | Off            | 0  | R/W |                     |
|         | D2  | LBON   | Supply voltage booster On/Off control                                   | On             | Off            | 0  | R/W |                     |
|         |     | LCDCS1 | Display timing generator control                                        |                |                | 0  | R/W |                     |
|         | 00  |        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                    |                |                | 0  | K/W |                     |

### LCDCS0, LCDCS1: 00FF09H•D0, D1

Controls the display timing generator.

| Table 15.6.2 | Controlling | display ti | ming generator |
|--------------|-------------|------------|----------------|
|--------------|-------------|------------|----------------|

| LCDCS1 | LCDCS0 | Source clock (fLCD)  |
|--------|--------|----------------------|
| 1      | 1      | Programmable timer 5 |
|        |        | underflow signal     |
| 1      | 0      | fosc1/2              |
| 0      | 1      | fosc1/1              |
| 0      | 0      | OFF                  |

Setting LCDCS0–LCDCS1 to "00" stops supplying the clock to the display timing generator, as a result all the LCD output signals go to a Vss level. When a source clock is selected, the display timing generator inputs the clock as the CL signal and starts generating the frame (FR) signal. The display timing generator also outputs the voltage booster clock to generate the LCD drive voltages. Therefore, be sure to select a source clock before turning the on-chip power supply circuit ON.

At initial reset, LCDCS is set to "00" (OFF).

### LCDON: 00FF09H•D6

Turns the LCD driver circuit ON and OFF.

When "1" is written: ON When "0" is written: OFF Reading: Valid

When LCDON is set to "1", the LCD driver circuit activates and allows display controls. However, the LCD drive voltages must be supplied to the LCD driver circuit before setting LCDON to "1" (see Chapter 4, "Power Supply").

When LCDON is set to "0", the LCD driver circuit deactivates and display controls will be ineffective. At initial reset, LCDON is set to "0" (OFF).

### DSPC0, DSPC1: 00FF08H•D0, D1

#### Controls the LCD display.

Table 15.6.3 LCD display control

|       |       | 1 5            |
|-------|-------|----------------|
| DSPC1 | DSPC0 | LCD display    |
| 1     | 1     | All dots ON    |
| 1     | 0     | All dots OFF   |
| 0     | 1     | Normal display |
| 0     | 0     | Display OFF    |

The four settings mentioned above can be made without changing the display memory data. At initial reset, this register is set to "00" (display OFF).

#### DSPREV: 00FF08H•D2

Reverses the display.

| When "1" is written: | Normal display  |
|----------------------|-----------------|
| When "0" is written: | Reverse display |
| Reading:             | Valid           |

When DSPREV is set to "0", the display on the LCD panel is reversed (black pixels are turned white and vice versa). Normal screen appears when DSPREV = "1". This software control does not affect the contents of the display data RAM. This control is effective when normal display or all dots ON (DSPC0–DSPC1 = "01" or "11") is selected. When all dots OFF (DSPC0–DSPC1 = "10") is selected, display is not reversed (all dots go out). At initial reset, DSPREV is set to "1" (normal display).

#### DSPAR: 00FF08H•D3

Selects the display area.

When "1" is written:Display area 1When "0" is written:Display area 0Reading:Valid

An area to be displayed is selected from two areas in the display data RAM.

When DSPAR is set to "0", display area 0 is selected and when set to "1", display area 1 is selected. See Figures 15.4.1 and 15.4.2 for the display areas. At initial reset, DSPAR is set to "0" (display area 0).

#### COMREV: 00FF08H•D4

Reverses the memory allocation for the COM terminals.

| When "1" is written: | Normal             |
|----------------------|--------------------|
|                      | (ascending order)  |
| When "0" is written: | Reversed           |
|                      | (descending order) |
| Reading:             | Valid              |

See Figures 15.4.1 and 15.4.2 for correspondence between the display data RAM and COM terminals. At initial reset, COMREV is set to "1" (normal).

#### SEGREV: 00FF08H•D5

Reverses the memory allocation for the SEG terminals.

| When "1" is written: | Normal             |
|----------------------|--------------------|
|                      | (ascending order)  |
| When "0" is written: | Reversed           |
|                      | (descending order) |
| Reading:             | Valid              |

See Figures 15.4.1 and 15.4.2 for correspondence between the display data RAM and SEG terminals. At initial reset, SEGREV is set to "1" (normal).

#### LFRM: 00FF08H•D6

Controls the FR signal output.

When "1" is written:FR signal output ONWhen "0" is written:FR signal output OFFReading:Valid

When LFRM is set to "1", the FR signal is output from the P27 terminal. When LFRM is set to "0", the P27 terminal functions as an I/O port. At initial reset, LFRM is set to "0" (FR signal output OFF).

#### *LCLK: 00FF08H•D7*

Controls the CL signal output.

When "1" is written:CL signal output ONWhen "0" is written:CL signal output OFFReading:Valid

When LCLK is set to "1", the CL signal is output from the P26 terminal. When LCLK is set to "0", the P26 terminal functions as an I/O port. At initial reset, LCLK is set to "0" (CL signal output OFF).

### **15.7 Precautions**

- The display timing generator outputs the voltage booster clock to generate the LCD drive voltages. Therefore, be sure to select a source clock using the LCDCS register before turning the on-chip power supply circuit ON.
- (2) Since the CL and FR signals are generated asynchronously with the LCLK and LFRM registers, hazard may occur on the waveforms when the signal is turned ON/OFF using the register.
- (3) Be sure to set LCDCS0-1, LCDON, VCON, VC5ON and LBON to OFF before executing the SLP instruction. Also note that a hazard may occur if LCDCS0-1 is changed when LCLK and LFRM is ON.

# *16 SUPPLY VOLTAGE DETECTION* (SVD) CIRCUIT

## 16.1 Configuration of SVD Circuit

The S1C88655 has a built-in SVD (supply voltage detection) circuit, so that the software can find when the source voltage lowers. Turning the SVD circuit ON/OFF and the SVD criteria voltage setting can be done with software.

Figure 16.1.1 shows the configuration of the SVD circuit.

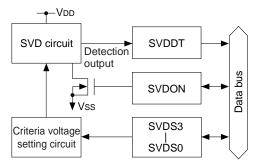



Fig. 16.1.1 Configuration of SVD circuit

### 16.2 SVD Operation

The SVD circuit compares the criteria voltage set by software and the supply voltage (VDD–VSS) and sets its results into the SVDDT latch. By reading the data of this SVDDT latch, it can be determined by means of software whether the supply voltage is normal or has dropped.

The criteria voltage can be set for the 13 types shown in Table 16.2.1 by the SVDS3–SVDS0 registers.

| SVDS3 | SVDS2 | SVDS1 | SVDS0 | Criteria<br>voltage (V) |
|-------|-------|-------|-------|-------------------------|
| 1     | 1     | 1     | 1     | 2.7                     |
| 1     | 1     | 1     | 0     | 2.6                     |
| 1     | 1     | 0     | 1     | 2.5                     |
| 1     | 1     | 0     | 0     | 2.4                     |
| 1     | 0     | 1     | 1     | 2.3                     |
| 1     | 0     | 1     | 0     | 2.2                     |
| 1     | 0     | 0     | 1     | 2.1                     |
| 1     | 0     | 0     | 0     | 2.05                    |
| 0     | 1     | 1     | 1     | 2.0                     |
| 0     | 1     | 1     | 0     | 1.95                    |
| 0     | 1     | 0     | 1     | 1.9                     |
| 0     | 1     | 0     | 0     | 1.85                    |
| 0     | 0     | 1     | 1     | 1.8                     |
| 0     | 0     | 1     | 0     | -                       |
| 0     | 0     | 0     | 1     | -                       |
| 0     | 0     | 0     | 0     | _                       |

Table 16.2.1 Criteria voltage setting

When the SVDON register is set to "1", source voltage detection by the SVD circuit is executed. As soon as the SVDON register is reset to "0", the result is loaded to the SVDDT latch and the SVD circuit goes OFF.

To obtain a stable detection result, the SVD circuit must be ON for at least 500  $\mu$ sec. So, to obtain the SVD detection result, follow the programming sequence below.

- 1. Set SVDON to "1"
- 2. Maintain for 500 µsec minimum
- 3. Set SVDON to "0"
- 4. Read SVDDT

When the SVD circuit is ON, the IC draws a large current, so keep the SVD circuit off unless it is.

### 16.3 Details of Control Register

Table 16.3.1 shows the SVD circuit control bits.

 Table 16.3.1
 SVD circuit control bits

| Address | Bit | Name  | Function                                                                                                                         | 1   | 0      | SR | R/W | Comment             |  |
|---------|-----|-------|----------------------------------------------------------------------------------------------------------------------------------|-----|--------|----|-----|---------------------|--|
| 00FF0C  | D7  | -     | _                                                                                                                                | -   | -      | -  | R   | Constantly "0" when |  |
|         | D6  | -     | _                                                                                                                                | -   | -      | -  | R   | being read          |  |
|         | D5  | SVDDT | SVD detection data                                                                                                               | Low | Normal | 0  | R   |                     |  |
|         | D4  | SVDON | SVD circuit On/Off                                                                                                               | On  | Off    | 0  | R/W |                     |  |
|         | D3  | SVDS3 | SVD criteria voltage setting                                                                                                     |     |        | 0  | R/W |                     |  |
|         | D2  | SVDS2 | $\frac{\text{SVDS3}}{1}  \frac{\text{SVDS2}}{1}  \frac{\text{SVDS1}}{1}  \frac{\text{SVDS0}}{1}  \frac{\text{Voltage (V)}}{2.7}$ |     |        | 0  | R/W |                     |  |
|         | D1  | SVDS1 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                             |     |        | 0  | R/W |                     |  |
|         | D0  | SVDS0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                             |     |        | 0  | R/W |                     |  |

#### SVDS3-SVDS0: 00FF0CH•D3-D0

Criteria voltage for SVD is set as shown in Table 16.2.1.

At initial reset, this register is set to "0".

#### SVDON: 00FF0CH•D4

Controls the SVD circuit ON and OFF.

When "1" is written:SVD circuit ONWhen "0" is written:SVD circuit OFFReading:Valid

When the SVDON register is set to "1", a supply voltage detection is executed by the SVD circuit. As soon as SVDON is reset to "0", the result is loaded to the SVDDT latch. To obtain a stable detection result, the SVD circuit must be ON for at least 500  $\mu$ sec.

At initial reset, this register is set to "0".

#### SVDDT: 00FF0CH•D5

This is the result of supply voltage detection.

| When "0" is read: | Supply voltage (VDD-Vss) |
|-------------------|--------------------------|
|                   | ≥ Criteria voltage       |
| When "1" is read: | Supply voltage (VDD-Vss) |
|                   | < Criteria voltage       |
| Writing:          | Invalid                  |

The result of supply voltage detection at time of SVDON is set to "0" can be read from this latch. At initial reset, SVDDT is set to "0".

### 16.4 Precautions

- To obtain a stable detection result, the SVD circuit must be ON for at least 500 µsec. So, to obtain the SVD detection result, follow the programming sequence below.
  - 1. Set SVDON to "1"
  - 2. Maintain for 500 µsec minimum
  - 3. Set SVDON to "0"
  - 4. Read SVDDT
- (2) The SVD circuit should normally be turned OFF because SVD operation increase current consumption.

# **17 SUMMARY OF NOTES**

# 17.1 Notes for Low Current Consumption

The S1C88655 can turn circuits, which consume a large amount of power, ON or OFF by control registers.

You can reduce power consumption by creating a program that operates the minimum necessary circuits using these control registers.

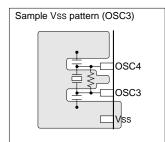
Next, which circuit systems' operation can be controlled and their control registers (instructions) are explained. You should refer to these when programming.

See Chapter 19, "Electrical Characteristics", for the current consumption.

Refer to "Precautions" in each peripheral section for precautions of each peripheral circuit.

| Circuit type         | Control register (Instruction) | Status at time of initial resetting             |
|----------------------|--------------------------------|-------------------------------------------------|
| CPU                  | HALT and SLP instructions      | Operation status                                |
| Oscillation circuit  | CLKCHG                         | OSC3 clock (CLKCHG = "1")                       |
|                      | SOSC3                          | OSC3 oscillation ON (SOSC3 = "1")               |
|                      | SOSC1                          | OSC1 oscillation ON (SOSC1 = "1")               |
| Power supply circuit | LBON                           | Supply voltage booster circuit OFF (LBON = "0") |
|                      | VC5ON                          | VC5 voltage generator OFF (VC5ON = "0")         |
|                      | VCON                           | VC1-4 voltage generator ON (VCON = "1")         |
| LCD driver circuit   | LCDON                          | LCD driver circuit OFF (LCDON = "0")            |
|                      | DSPC0-1                        | Display OFF (DSPC0–1 = "0")                     |
| SVD circuit          | SVDON                          | OFF status (SVDON = "0")                        |

Table 17.1.1 Circuit systems and control registers


# **17.2 Precautions on Mounting**

#### <Oscillation Circuit>

• Oscillation characteristics change depending on conditions (board pattern, components used, etc.).

In particular, when a ceramic or crystal oscillator is used, use the oscillator manufacturer's recommended values for constants such as capacitance and resistance.

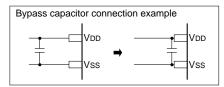
- Disturbances of the oscillation clock due to noise may cause a malfunction. Consider the following points to prevent this:
  - (1) Components which are connected to the OSC1, OSC2, OSC3 and OSC4 terminals, such as oscillators, resistors and capacitors, should be connected in the shortest line.
  - (2) As shown in the right hand figure, make a Vss pattern as large as possible at circumscription of the OSC1, OSC2, OSC3 and OSC4 terminals and the components connected to these terminals. Furthermore, do not use this Vss pattern for any purpose other than the oscillation system.



• In order to prevent unstable operation of the oscillation circuit due to current leak between OSC1/OSC3 and VDD, please keep enough distance between OSC1/OSC3 and VDD or other signals on the board pattern.

### <Reset Circuit>

• The power-on reset signal which is input to the RESET terminal changes depending on conditions (power rise time, components used, board pattern, etc.).

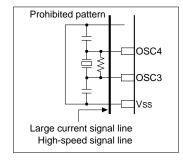

Decide the time constant of the capacitor and resistor after enough tests have been completed with the application product.

When the built-in pull-up resistor of the RESET terminal is used, take into consideration dispersion of the resistance for setting the constant.

• In order to prevent any occurrences of unnecessary resetting caused by noise during operating, components such as capacitors and resistors should be connected to the RESET terminal in the shortest line.

### <Power Supply Circuit>

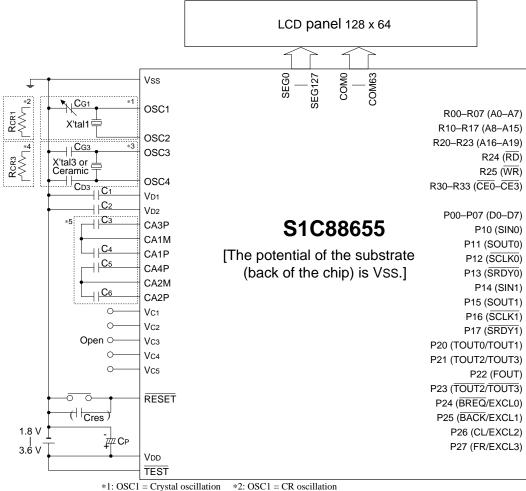
- Sudden power supply variation due to noise may cause malfunction. Consider the following points to prevent this:
  - (1) The power supply should be connected to the VDD and Vss terminal with patterns as short and large as possible.
  - (2) When connecting between the VDD and VSS terminals with a bypass capacitor, the terminals should be connected as short as possible.




(3) Components which are connected to the VD1 and VD2 terminals, such as capacitors and resistors, should be connected in the shortest line.

### <Arrangement of Signal Lines>

- In order to prevent generation of electromagnetic induction noise caused by mutual inductance, do not arrange a large current signal line near the circuits that are sensitive to noise such as the oscillation unit.
- When a signal line is parallel with a high-speed line in long distance or intersects a high-speed line, noise may generated by mutual interference between the signals and it may cause a malfunction.


Do not arrange a high-speed signal line especially near circuits that are sensitive to noise such as the oscillation unit.



### <Precautions for Visible Radiation (when bare chip is mounted)>

- Visible radiation causes semiconductor devices to change the electrical characteristics. It may cause this IC to malfunction. When developing products which use this IC, consider the following precautions to prevent malfunctions caused by visible radiations.
  - (1) Design the product and implement the IC on the board so that it is shielded from visible radiation in actual use.
  - (2) The inspection process of the product needs an environment that shields the IC from visible radiation.
  - (3) As well as the face of the IC, shield the back and side too.

# 18 BASIC EXTERNAL WIRING DIAGRAM



\*1: OSC1 = Crystal oscillation \*2: OSC1 = CR oscillation

\*3: OSC3 = Crystal or Ceramic oscillation \*4: OSC3 = CR oscillation \*5: Example for VD2 = 5 × VDD (VD2 > VC5)

The external circuit configuration depends on the supply voltage and LCD drive voltage values.

#### Recommended values for external parts

| Symbol  | Name                        | Recommended value           |  |  |
|---------|-----------------------------|-----------------------------|--|--|
| X'tal1  | Crystal oscillator          | 32.768 kHz                  |  |  |
| CG1     | Trimmer capacitor           | 0–25 pF                     |  |  |
| RCR1    | Resistor for CR oscillation | 1.5 MΩ                      |  |  |
| X'tal3  | Crystal oscillator          | 4 MHz                       |  |  |
| Ceramic | Ceramic oscillator          | 4 MHz                       |  |  |
| CG3     | Gate capacitor              | 15 pF (Crystal oscillation) |  |  |
|         |                             | 30 pF (Ceramic oscillation) |  |  |
| CD3     | Drain capacitor             | 15 pF (Crystal oscillation) |  |  |
|         |                             | 30 pF (Ceramic oscillation) |  |  |

| Symbol | Name                          | Recommended value                     |
|--------|-------------------------------|---------------------------------------|
| RCR3   | Resistor for CR oscillation   | 39 kΩ                                 |
| C1     | Capacitor between Vss and VD1 | 0.1 μF                                |
| C2     | Capacitor between Vss and VD2 | 1.0–4.7 μF                            |
| C3-C6  | Booster capacitor             | 1.0–4.7 μF                            |
| СР     | Capacitor for power supply    | 3.3 μF                                |
| Cres   | Capacitor for RESET terminal  | $0.47 \mu\text{F}$ (Not required when |
|        |                               | the reset voltage detection           |
|        |                               | circuit is used.)                     |

Note: The above table is simply an example, and is not guaranteed to work.

# **19 ELECTRICAL CHARACTERISTICS**

### 19.1 Absolute Maximum Rating

|          |                                                                        |                                                                                                                                                                                     | (Vss =                                                                                                                                                                                                                                                                                                                                                                                                   | = 0 V)                                                                                                                                                                                                                               |
|----------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol   | Condition                                                              | Rated value                                                                                                                                                                         | Unit                                                                                                                                                                                                                                                                                                                                                                                                     | Note                                                                                                                                                                                                                                 |
| VDD      |                                                                        | -0.3 to +4.7                                                                                                                                                                        | V                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |
| VD2, VC5 |                                                                        | -0.3 to +24.0                                                                                                                                                                       | V                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |
| VI       |                                                                        | -0.3 to VDD + 0.3                                                                                                                                                                   | V                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |
| Vo       |                                                                        | -0.3 to VDD + 0.3                                                                                                                                                                   | V                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |
| Іон      | 1 terminal                                                             | -5                                                                                                                                                                                  | mA                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |
|          | Total of all terminals                                                 | -20                                                                                                                                                                                 | mA                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |
| IOL      | 1 terminal                                                             | 5                                                                                                                                                                                   | mA                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |
|          | Total of all terminals                                                 | 20                                                                                                                                                                                  | mA                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |
| PD       |                                                                        | 200                                                                                                                                                                                 | mW                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                    |
| Topr     |                                                                        | -20 to +70                                                                                                                                                                          | °C                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |
| Tstg     |                                                                        | -65 to +150                                                                                                                                                                         | °C                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |
| Tsol     |                                                                        | 260°C, 10 sec (lead section)                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |
|          | VDD<br>VD2, VC5<br>VI<br>VO<br>IOH<br>IOH<br>IOL<br>PD<br>Topr<br>Tstg | VDD       VD2, VC5       VI       V0       IOH       1 terminal       Total of all terminals       IOL       1 terminal       Total of all terminals       PD       Topr       Tstg | VDD         -0.3 to +4.7           VD2, VC5         -0.3 to +24.0           VI         -0.3 to VDD + 0.3           V0         -0.3 to VDD + 0.3           IOH         1 terminal           Total of all terminals         -20           IOL         1 terminal           Total of all terminals         20           PD         200           Topr         -20 to +70           Tstg         -65 to +150 | $\begin{tabular}{ c c c c c } \hline Symbol & Condition & Rated value & Unit \\ \hline V_{DD} & & & & & & & & & & & & & \\ \hline V_{DD} & & & & & & & & & & & & & & & & & \\ \hline V_{DD} & Vc & & & & & & & & & & & & & & & & & $ |

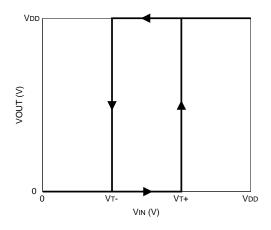
Note) 1 In case of plastic package.

### **19.2 Recommended Operating Conditions**

| Item                            | Symbol | Condition                   | Min. | Тур.   | Max. | Unit | Note |
|---------------------------------|--------|-----------------------------|------|--------|------|------|------|
| Operating power voltage         | VDD    |                             | 1.8  |        | 3.6  | V    |      |
| Operating frequency             | fosc1  | Crystal/CR oscillation      | 30   | 32.768 | 200  | kHz  |      |
|                                 | fosc3  | CR oscillation              | 0.2  |        | 2.2  | MHz  |      |
|                                 |        | Crystal/ceramic oscillation | 0.2  |        | 8.2  | MHz  |      |
| Capacitor between VD1 and VSS   | C1     |                             |      | 0.1    |      | μF   |      |
| Capacitor between VD2 and VSS   | C2     |                             | 1.0  |        | 4.7  | μF   | 1    |
| Capacitor between CA3P and CA1M | C3     |                             | 1.0  |        | 4.7  | μF   | 1    |
| Capacitor between CA1P and CA1M | C4     |                             | 1.0  |        | 4.7  | μF   | 1    |
| Capacitor between CA4P and CA2M | C5     |                             | 1.0  |        | 4.7  | μF   | 1    |
| Capacitor between CA2P and CA2M | C6     |                             | 1.0  |        | 4.7  | μF   | 1    |

Note) 1 When LCD drive power is not used, the capacitor is not necessary.

Configuration of C3-C6 is different depending on the boosting ratio.


# **19.3 DC Characteristics**

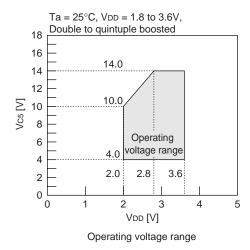
| Unless otherwise specified: VDD = 1.8 | to 3.6 V | , $Vss = 0 V$ , $Ta = -20 to 70^{\circ}C$   |        |      |        |      |      |
|---------------------------------------|----------|---------------------------------------------|--------|------|--------|------|------|
| Item                                  | Symbol   | Condition                                   | Min.   | Тур. | Max.   | Unit | Note |
| High level input voltage              | VIH      | Pxx                                         | 0.8Vdd |      | VDD    | V    | 1    |
| Low level input voltage               | VIL      | Pxx                                         | 0      |      | 0.2Vdd | V    | 1    |
| High level schmitt input voltage (1)  | VT1+     | RESET, MCU/MPU                              | 0.5Vdd |      | 0.9Vdd | V    |      |
| Low level schmitt input voltage (1)   | VT1-     | RESET, MCU/MPU                              | 0.1Vdd |      | 0.5Vdd | V    |      |
| High level schmitt input voltage (2)  | VT2+     | Pxx                                         | 0.5Vdd |      | 0.9Vdd | V    | 2    |
| Low level schmitt input voltage (2)   | VT2-     | Pxx                                         | 0.1Vdd |      | 0.5Vdd | V    | 2    |
| High level output current             | Іон      | PXX, RXX, VOH = $0.9$ VDD                   |        |      | -0.5   | mA   |      |
| Low level output current              | Iol      | Pxx, Rxx, Vol = 0.1 VDD                     | 0.5    |      |        | mA   |      |
| Input leak current                    | ILI      | Pxx, RESET, MCU/MPU                         | -1     |      | 1      | μΑ   |      |
| Output leak current                   | Ilo      | Pxx, Rxx                                    | -1     |      | 1      | μΑ   |      |
| Input pull-up resistance              | Rin      | Pxx, RESET, MCU/MPU                         | 100    |      | 500    | kΩ   | 3    |
| Input terminal capacitance            | Cin      | Pxx                                         |        |      | 15     | pF   |      |
|                                       |          | $V_{IN} = 0 V, f = 1 MHz, Ta = 25^{\circ}C$ |        |      |        |      |      |

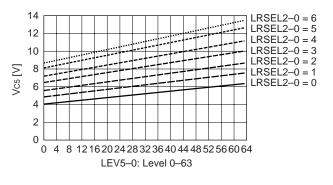
Note) 1 When CMOS level is selected by mask option.

2 When CMOS Schmitt level is selected by mask option.

3 When addition of pull-up resistor is selected by mask option.




## 19.4 Analog Circuit Characteristics


### LCD drive circuit

Unless otherwise specified: VDD = 2.0 to 3.6 V, Vss = 0 V, Ta = 25°C, No panel load

| Item                               | Symbol | Condition                      | Min.      | Тур.      | Max.      | Unit | Note |
|------------------------------------|--------|--------------------------------|-----------|-----------|-----------|------|------|
| Voltage booster circuit            | VDD    | Double boosted                 | 2.0       | -         | 3.6       | V    |      |
| operating voltage                  |        | Triple boosted                 | 2.0       | -         | 3.6       | V    |      |
|                                    |        | Quadruple boosted              | 2.0       | -         | 3.6       | V    |      |
|                                    |        | Quintuple boosted              | 2.0       | -         | 3.6       | V    |      |
| VD2 voltage range                  | VD2    |                                | -         | -         | 18        | V    |      |
| VC1-5 voltage range (for 1/9 bias) | VC5    | Set using LRSEL0–2 and LEV0–5. | Typ.×0.93 | 4.0-14.0  | Typ.×1.07 | V    | 1    |
|                                    | VC4    |                                | -         | 0.889×Vc5 | -         | V    |      |
|                                    | VC3    |                                | -         | 0.778×Vc5 | -         | V    |      |
|                                    | VC2    |                                | -         | 0.222×Vc5 | -         | V    |      |
|                                    | VC1    |                                | -         | 0.111×Vc5 | -         | V    |      |
| VC1-5 voltage range (for 1/7 bias) | VC5    | Set using LRSEL0–2 and LEV0–5. | Typ.×0.93 | 4.0-14.0  | Typ.×1.07 | V    | 1    |
|                                    | VC4    |                                | -         | 0.857×Vc5 | -         | V    |      |
|                                    | VC3    |                                | -         | 0.714×Vc5 | -         | V    |      |
|                                    | VC2    |                                | -         | 0.286×Vc5 | -         | V    |      |
|                                    | VC1    |                                | -         | 0.143×Vc5 | -         | V    |      |

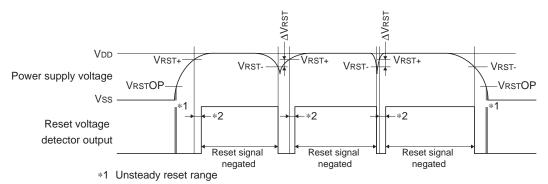
Note) 1 See the plot below for the VC5 voltage adjustable range.





Vc5 output voltage adjustment range (Typ.)

# SVD circuit


Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V,  $Ta = 25^{\circ}C$ 

| Item                      | Symbol         | Condition      | Min.      | Тур. | Max.      | Unit | Note |
|---------------------------|----------------|----------------|-----------|------|-----------|------|------|
| SVD voltage               | Vsvd           | SVDS0-3 = "0"  |           | -    |           | V    |      |
|                           |                | SVDS0-3 = "1"  | 1         | -    | ]         | V    |      |
|                           |                | SVDS0-3 = "2"  | 1         | -    |           | V    |      |
|                           |                | SVDS0-3 = "3"  |           | 1.8  |           | V    |      |
|                           |                | SVDS0-3 = "4"  |           | 1.85 | ]         | V    |      |
|                           |                | SVDS0-3 = "5"  |           | 1.9  |           | V    |      |
|                           |                | SVDS0-3 = "6"  | 1         | 1.95 | ]         | V    |      |
|                           |                | SVDS0-3 = "7"  | 1         | 2.0  |           | V    |      |
|                           |                | SVDS0-3 = "8"  |           | 2.05 |           | V    |      |
|                           |                | SVDS0-3 = "9"  | Typ.×0.91 | 2.1  | Typ.×1.09 | V    |      |
|                           |                | SVDS0-3 = "10" |           | 2.2  |           | V    |      |
|                           |                | SVDS0-3 = "11" | 1         | 2.3  |           | V    |      |
|                           |                | SVDS0-3 = "12" | 1         | 2.4  | ]         | V    |      |
|                           |                | SVDS0-3 = "13" | 1         | 2.5  |           | V    |      |
|                           |                | SVDS0-3 = "14" | 1         | 2.6  | 1         | V    |      |
|                           | SVDS0–3 = "15" |                | 2.7       |      | V         |      |      |
| SVD circuit response time | tsvd           |                |           |      | 500       | μs   |      |

# RVD circuit

Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V,  $Ta = 25^{\circ}C$ 

| Item                    | Symbol | Condition                                        | Min.      | Тур. | Max.      | Unit | Note |
|-------------------------|--------|--------------------------------------------------|-----------|------|-----------|------|------|
| Reset detection voltage | VRST+  | $V_{DD} = L \rightarrow H$ (Reset release level) | Typ.×0.91 | 1.3  | Typ.×1.09 | V    |      |
|                         | VRST-  | $VDD = H \rightarrow L$ (Reset level)            |           | 1.25 |           | V    |      |
| Hysteresis voltage      | ΔVrst  | $V \text{DD} = L \rightarrow H \rightarrow L$    | 20        | 50   | 80        | mV   |      |
| Operation limit voltage | VRSTOP |                                                  |           | 0.65 | 1.0       | V    |      |



\*2 Reset hold range (Reset status is held for a certain time after the power supply voltage exceeds the reset release level.)

| Item                       | Symbol | Condition                                              | Min. | Тур. | Max. | Unit | Note |
|----------------------------|--------|--------------------------------------------------------|------|------|------|------|------|
| Current consumption        | ISLP   | OSC1 = OFF, OSC3 = OFF                                 |      | 0.7  | 1.5  | μA   |      |
| in SLEEP mode              |        |                                                        |      |      |      |      |      |
| Current consumption        | IHALT1 | OSC1 = 32 kHz Crystal, OSC3 = OFF                      |      | 2    | 4    | μΑ   |      |
| in HALT mode               | IHALT2 | OSC1 = 32 kHz CR, OSC3 = OFF                           |      | 7    | 11   | μΑ   |      |
|                            | IHALT3 | OSC1 = OFF, OSC3 = 8 MHz Ceramic                       |      | 150  | 300  | μΑ   |      |
|                            | IHALT4 | OSC1 = OFF, OSC3 = 2 MHz CR                            |      | 200  | 400  | μΑ   |      |
| Current consumption        | IEXE1  | OSC1 = 32 kHz Crystal, OSC3 = OFF                      |      | 5    | 8    | μΑ   |      |
| during execution           | IEXE2  | OSC1 = 32 kHz CR, OSC3 = OFF                           |      | 10   | 15   | μΑ   |      |
|                            | IEXE3  | OSC1 = OFF, OSC3 = 8 MHz Ceramic                       |      | 800  | 1200 | μΑ   |      |
|                            | IEXE4  | OSC1 = OFF, OSC3 = 2 MHz CR                            |      | 350  | 550  | μΑ   |      |
| RVD circuit current        | IRVD   | VDD = 3.6 V                                            |      | 1.5  | 3    | μA   | 1    |
| SVD circuit current        | Isvd   | VDD = 3.6 V                                            |      | 5    | 10   | μΑ   | 2    |
| LCD driver circuit current | ILCD1  | $V_{DD} = 2.0 V$ , Quintuple boosted, $V_{C5} = 8 V$ , |      | 80   | 120  | μΑ   | 3    |
|                            |        | White screen displayed                                 |      |      |      |      |      |
|                            | ILCD2  | $V_{DD} = 2.0 V$ , Quintuple boosted, $V_{C5} = 8 V$ , |      | 200  | 300  | μΑ   | 3    |
|                            |        | Checker pattern displayed                              |      |      |      |      |      |
|                            | ILCD3  | $V_{DD} = 3.0 V$ , Triple boosted, $V_{C5} = 8 V$ ,    |      | 50   | 75   | μΑ   | 3    |
|                            |        | White screen displayed                                 |      |      |      |      |      |
|                            | ILCD4  | $V_{DD} = 3.0 V$ , Triple boosted, $V_{C5} = 8 V$ ,    |      | 120  | 180  | μΑ   | 3    |
|                            |        | Checker pattern displayed                              |      |      |      |      |      |

# **19.5 Power Current Consumption**

Note) 1 This value is added to the current consumption in SLEEP mode/in HALT mode/during execution when the reset voltage detector is selected by mask option.

2 This value is added to the current consumption in SLEEP mode/in HALT mode/during execution when the SVD circuit is active.

SVDON = "1", SVDS0–3 = "Fh"

3 This value is added to the current consumption in SLEEP mode/in HALT mode/during execution when the LCD driver circuit is active.

LCDCS0-1 = "01", LBON = "1", VC5ON = "1", LBIAS = "1", DSPC0-1 = "01", LRSEL0-2 and LEV0-5 = arbitrarily and LEV0-5 = arbitrarily arbitrary arbi

# **19.6 AC Characteristics**

■ Operating range Condition: VDD = 1.8 to 3.6 V, Vss = 0 V, Ta = -20 to 70°C

| Item                               | Symbol | Condition           | Min. | Тур.   | Max. | Unit | Note |
|------------------------------------|--------|---------------------|------|--------|------|------|------|
| Operating frequency                | fosc1  | VDD = 1.8 to 3.6 V  | 30   | 32.768 | 200  | kHz  |      |
|                                    | fosc3  |                     | 0.2  |        | 8.2  | MHz  |      |
| Instruction execution time         | tcy    | 1-cycle instruction | 10   | 61     | 67   | μs   |      |
| (during operation with OSC1 clock) |        | 2-cycle instruction | 20   | 122    | 133  | μs   |      |
|                                    |        | 3-cycle instruction | 30   | 183    | 200  | μs   |      |
|                                    |        | 4-cycle instruction | 40   | 244    | 267  | μs   |      |
|                                    |        | 5-cycle instruction | 50   | 305    | 333  | μs   |      |
|                                    |        | 6-cycle instruction | 60   | 366    | 400  | μs   |      |
| Instruction execution time         | tcy    | 1-cycle instruction | 0.24 |        | 10   | μs   |      |
| (during operation with OSC3 clock) |        | 2-cycle instruction | 0.49 |        | 20   | μs   |      |
|                                    |        | 3-cycle instruction | 0.73 |        | 30   | μs   |      |
|                                    |        | 4-cycle instruction | 0.98 |        | 40   | μs   |      |
|                                    |        | 5-cycle instruction | 1.22 |        | 50   | μs   |      |
|                                    |        | 6-cycle instruction | 1.46 |        | 60   | μs   |      |

### **19 ELECTRICAL CHARACTERISTICS**

# External memory access

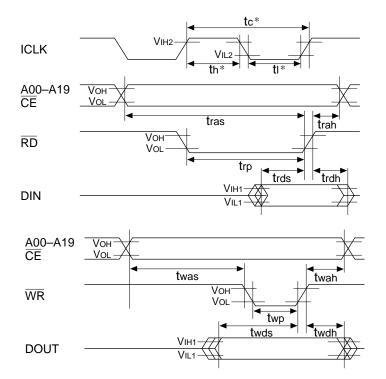
### • Read cycle

 $\textit{Condition: Vdd} = 1.8 \text{ to } 3.6 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}, \text{ Vih1} = 0.8 \text{ Vdd}, \text{ Vil1} = 0.2 \text{ Vdd}, \text{ Vih2} = 1.6 \text{ V}, \text{ Vil2} = 0.6 \text{ V},$ 

VOH = 0.8VDD, VOL = 0.2VDD, CL = 100 pF (load capacitance)

| Item                                 | Symbol | Min.            | Тур. | Max. | Unit | Note |
|--------------------------------------|--------|-----------------|------|------|------|------|
| Address set-up time in read cycle    | tras   | tc+tl-50+n•tc/2 |      |      | ns   | 1    |
| Address hold time in read cycle      | trah   | th-40           |      |      | ns   |      |
| Read signal pulse width              | trp    | tc-10+n•tc/2    |      |      | ns   | 1    |
| Data input set-up time in read cycle | trds   | 150             |      |      | ns   |      |
| Data input hold time in read cycle   | trdh   | 0               |      |      | ns   |      |

Note) 1 Substitute the number of states for wait insertion in n.


### • Write cycle

 $Condition: VDD = 1.8 \text{ to } 3.6 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}, \text{ Vihi} = 0.8 \text{ Vdd}, \text{ Vili} = 0.2 \text{ Vdd}, \text{ Vihi} = 1.6 \text{ V}, \text{ Vili} = 0.6 \text{ V}, \text{ Vili} = 0.6 \text{ V}, \text{ Vili} = 0.2 \text{ Vdd}, \text{ Vdd}, \text{ Vdd} = 0.2 \text{ Vdd}, \text$ 

VOH = 0.8VDD, VOL = 0.2VDD, CL = 100 pF (load capacitance)

| Item                                   | Symbol | Min.         | Тур. | Max.  | Unit | Note |
|----------------------------------------|--------|--------------|------|-------|------|------|
| Address set-up time in write cycle     | twas   | tc-90        |      |       | ns   |      |
| Address hold time in write cycle       | twah   | th-40        |      |       | ns   |      |
| Write signal pulse width               | twp    | t1-20+n•tc/2 |      |       | ns   | 1    |
| Data output set-up time in write cycle | twds   | tc-90+n•tc/2 |      |       | ns   | 1    |
| Data output hold time in write cycle   | twdh   | th-40        |      | th+40 | ns   |      |

Note) 1 Substitute the number of states for wait insertion in n.



\* In the case of crystal oscillation and ceramic oscillation: th =  $0.5tc \pm 0.05tc$ , tl = tc - th (1/tc: oscillation frequency)

\* In the case of CR oscillation: th =  $0.5tc \pm 0.10tc$ , tl = tc - th (1/tc: oscillation frequency)

# Serial interface

### Clock synchronous master mode

 $\textit{Condition: Vdd} = 1.8 \text{ to } 3.6 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Ta} = 25^{\circ}\text{C}, \text{Vihi} = 0.8 \text{Vdd}, \text{Vili} = 0.2 \text{Vdd}, \text{Voh} = 0.8 \text{Vdd}, \text{Vol} = 0.2 \text{Vdd}, \text{Vol} =$ 

| Item                                | Symbol | Min. | Тур. | Max. | Unit | Note |
|-------------------------------------|--------|------|------|------|------|------|
| Transmitting data output delay time | tsmd   |      |      | 100  | ns   |      |
| Receiving data input set-up time    | tsms   | 250  |      |      | ns   |      |
| Receiving data input hold time      | tsmh   | 100  |      |      | ns   |      |

### Clock synchronous slave mode

 $\textit{Condition: Vdd} = 1.8 \text{ to } 3.6 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}, \text{ Vihi} = 0.8 \text{ Vdd}, \text{ Vili} = 0.2 \text{ Vdd}, \text{ Voh} = 0.8 \text{ Vdd}, \text{ Vol} = 0.2 \text{ Vdd}, \text{ V$ 

| Item                                | Symbol | Min. | Тур. | Max. | Unit | Note |
|-------------------------------------|--------|------|------|------|------|------|
| Transmitting data output delay time | tssd   |      |      | 250  | ns   |      |
| Receiving data input set-up time    | tsss   | 100  |      |      | ns   |      |
| Receiving data input hold time      | tssh   | 100  |      |      | ns   |      |

#### Asynchronous system

Condition: VDD = 1.8 to 3.6 V, Vss = 0 V,  $Ta = 25^{\circ}C$ 

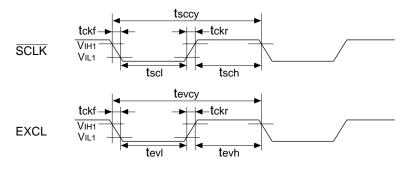
| Item                                     | Symbol | Min.  | Тур. | Max.            | Unit | Note |
|------------------------------------------|--------|-------|------|-----------------|------|------|
| Start bit detection error time           | tsa1   | 0     |      | t/16            | s    | 1    |
| Erroneous start bit detection range time | tsa2   | 9t/16 |      | 10 <b>t</b> /16 | s    | 2    |

Note) 1 Start bit detection error time is a logical delay time from inputting the start bit until internal sampling begins operating. (Time as far as AC is excluded.)

2 Erroneous start bit detection range time is a logical range to detect whether a LOW level (start bit) has been input again after a start bit has been detected and the internal sampling clock has started.

When a HIGH level is detected, the start bit detection circuit is reset and goes into a wait status until the next start bit. (Time as far as AC is excluded.)

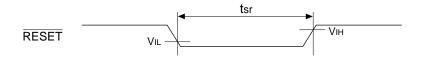



### **19 ELECTRICAL CHARACTERISTICS**

# ■ Input clock

# • SCLK, EXCL input clock

Condition: VDD = 1.8 to 3.6 V, Vss = 0 V,  $Ta = 25^{\circ}C$ , VIH1 = 0.8VDD, VIL1 = 0.2VDD


| Item                     |                 | Symbol | Min.     | Тур. | Max. | Unit | Note |
|--------------------------|-----------------|--------|----------|------|------|------|------|
| SCLK input clock time    | Cycle time      | tsccy  | 2        |      |      | μs   |      |
|                          | "H" pulse width | tsch   | 1        |      |      | μs   |      |
|                          | "L" pulse width | tscl   | 1        |      |      | μs   |      |
| EXCL input clock time    | Cycle time      | tevcy  | 64/fosc1 |      |      | s    |      |
| (with noise rejector)    | "H" pulse width | tevh   | 32/fosc1 |      |      | s    |      |
|                          | "L" pulse width | tevl   | 32/fosc1 |      |      | s    |      |
| EXCL input clock time    | Cycle time      | tevcy  | 2        |      |      | μs   |      |
| (without noise rejector) | "H" pulse width | tevh   | 1        |      |      | μs   |      |
|                          | "L" pulse width | tevl   | 1        |      |      | μs   |      |
| Input clock rising time  |                 | tckr   |          |      | 25   | ns   |      |
| Input clock falling time |                 | tckf   |          |      | 25   | ns   |      |



### RESET input clock

Condition: VDD = 1.8 to 3.6 V, Vss = 0 V,  $Ta = 25^{\circ}C$ , VIH = 0.5VDD, VIL = 0.1VDD

| Item             | Symbol | Min. | Тур. | Max. | Unit | Note |
|------------------|--------|------|------|------|------|------|
| RESET input time | tsr    | 100  |      |      | μs   |      |



# **19.7 Oscillation Characteristics**

Oscillation characteristics change depending on conditions (board pattern, components used, etc.). Use the following characteristics as reference values. In particular, when a ceramic oscillator or crystal oscillator is used for OSC3, use the oscillator manufacturer's recommended values for constants such as capacitance and resistance. The oscillation start time is important because it becomes the wait time when OSC3 clock is used. (If OSC3 is used as CPU clock before oscillation stabilizes, the CPU may malfunction.)

# OSC1 (Crystal)

Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V, Ta = 25°C,

Crystal oscillator = C-002RX (R1 = 30 kΩ (Typ.), CL = 12.5 pF)\*, CG1 = 25 pF, CD1 = Built-in

| Item                              | Symbol | Condition                                              | Min. | Тур. | Max. | Unit  | Note |
|-----------------------------------|--------|--------------------------------------------------------|------|------|------|-------|------|
| Oscillation start time            | tsta   |                                                        |      |      | 3    | s     |      |
| External gate capacitance         | CG1    | Including board capacitance                            | 0    |      | 25   | pF    |      |
| Built-in drain capacitance        | CD1    | In case of the chip                                    |      | 10   |      | pF    |      |
| Frequency/IC deviation            | ∂f/∂IC | VDD = constant                                         | -10  |      | 10   | ppm   |      |
| Frequency/power voltage deviation | ∂f/∂V  |                                                        |      |      | 1    | ppm/V |      |
| Frequency adjustment range        | ∂f/∂CG | $V_{DD} = constant, C_G = 0 \text{ to } 25 \text{ pF}$ | 25   |      |      | ppm   |      |

\* C-002RX Made by EPSON TOYOCOM

# OSC1 (CR)

Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V, Ta = 25°C

| Item                   | Symbol | Condition      | Min. | Тур. | Max. | Unit | Note |
|------------------------|--------|----------------|------|------|------|------|------|
| Oscillation start time | tsta   |                |      |      | 100  | μs   |      |
| Frequency/IC deviation | ∂f/∂IC | Rcr = constant | -25  |      | 25   | %    |      |

# OSC3 (Crystal)

Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V,  $Ta = 25^{\circ}C$ ,

Crystal oscillator = CA-301\*,  $R_F = 1 M\Omega$ ,  $C_{G3} = C_{D3} = 15 pF$ 

| Item                   | Symbol | Condition | Min. | Тур. | Max. | Unit | Note |
|------------------------|--------|-----------|------|------|------|------|------|
| Oscillation start time | tsta   |           |      |      | 10   | ms   | 1    |

\* CA-301 Made by EPSON TOYOCOM

Note) 1 The crystal oscillation start time changes by the crystal oscillator to be used, CG3 and CD3.

# OSC3 (Ceramic)

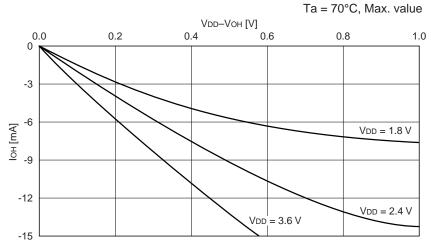
Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V,  $Ta = 25^{\circ}C$ ,

Ceramic oscillator = KBR-4.0MSB/KBR-8.0MSB\*,  $R_F = 1 M\Omega$ ,  $C_{G3} = C_{D3} = 30 pF$ 

| Item                   | Symbol | Condition | Min. | Тур. | Max. | Unit | Note |
|------------------------|--------|-----------|------|------|------|------|------|
| Oscillation start time | tsta   |           |      |      | 1    | ms   | 1    |
|                        |        |           |      |      |      |      |      |

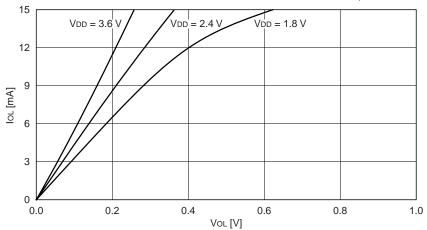
\* KBR-4.0MSB/KBR-8.0MSB Made by Kyocera

Note) 1 The ceramic oscillation start time changes by the ceramic oscillator to be used, CG3 and CD3.


# OSC3 (CR)

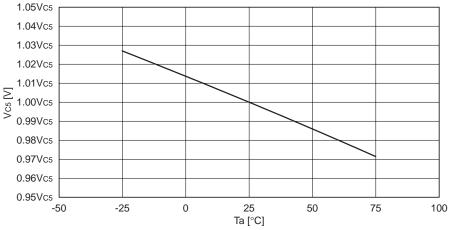
Unless otherwise specified: VDD = 1.8 to 3.6 V, Vss = 0 V,  $Ta = 25^{\circ}C$ 

| Item                   | Symbol | Condition      | Min. | Тур. | Max. | Unit | Note |
|------------------------|--------|----------------|------|------|------|------|------|
| Oscillation start time | tsta   |                |      |      | 100  | μs   |      |
| Frequency/IC deviation | ∂f/∂IC | Rcr = constant | -25  |      | 25   | %    |      |


# **19.8** Characteristics Curves (reference value)

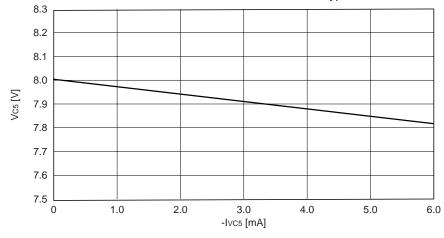
# High level output current characteristic



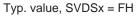

# Low level output current characteristic

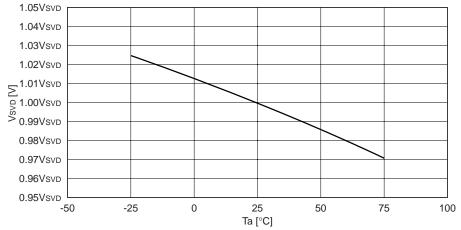
Ta = 70°C, Min. value



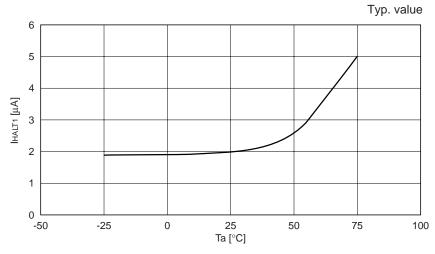


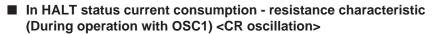


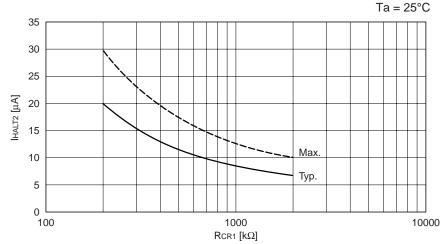



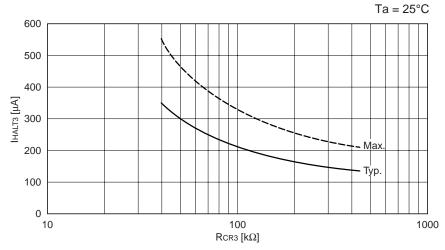

Typ. value, VC5 = 8 V

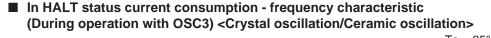


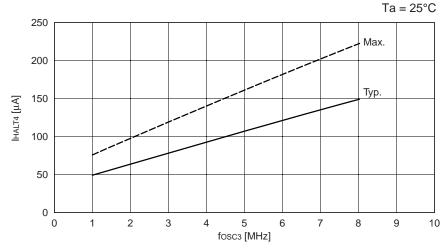


# SVD voltage - temperature characteristic

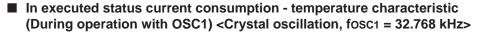


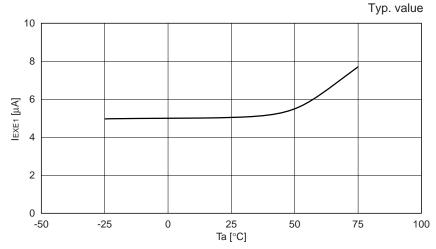




In HALT status current consumption - temperature characteristic (During operation with OSC1) <Crystal oscillation, fosc1 = 32.768 kHz>

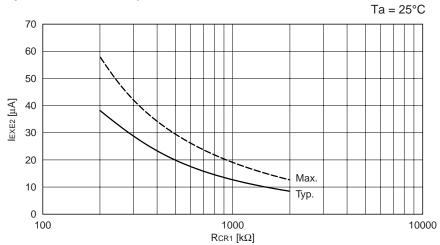


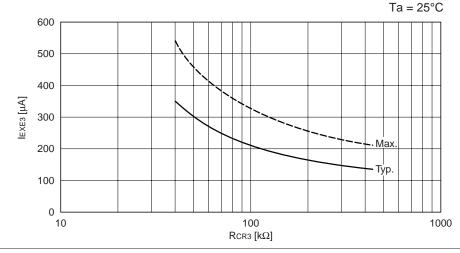





In HALT status current consumption - resistance characteristic (During operation with OSC3) <CR oscillation>

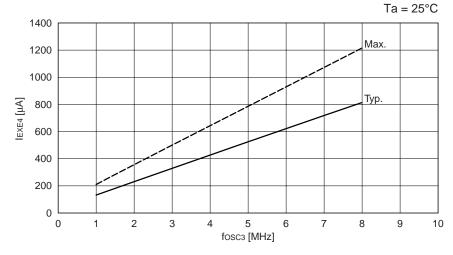




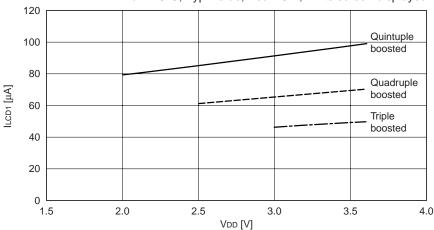


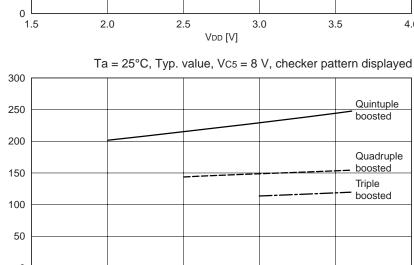




In executed status current consumption - resistance characteristic (During operation with OSC1) <CR oscillation>



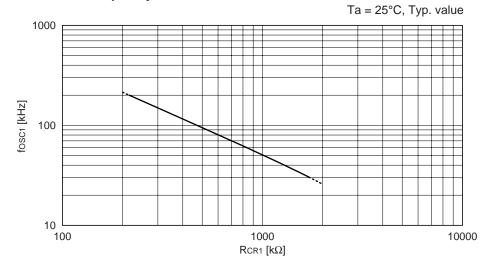

In executed status current consumption - resistance characteristic (During operation with OSC3) <CR oscillation>



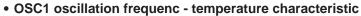

# In executed status current consumption - frequency characteristic (During operation with OSC3) <Crystal oscillation/Ceramic oscillation>

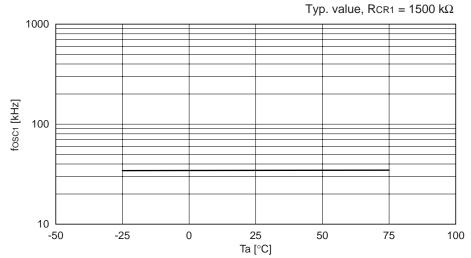


LCD driver circuit current - power voltage characteristic Ta = 25°C, Typ. value, Vc5 = 8 V, white screen displayed



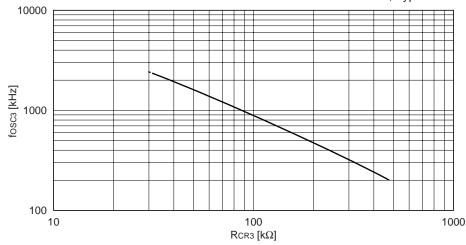


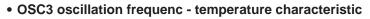



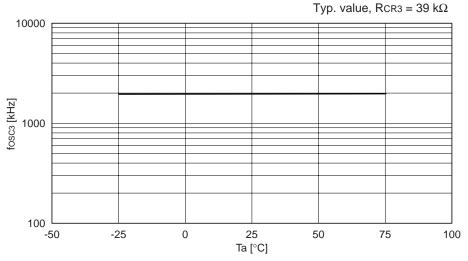


# CR oscillation frequency characteristic

Note: Oscillation frequency changes depending on the conditions (components used, board pattern, etc.). In particular, the OSC3 oscillation frequency changes extensively depending on the product form and board capacitance. Therefore, select the resistance value after evaluating the actual product. (The OSC3 resistance value should be set to RCR3  $\geq$  15 k $\Omega$ .)



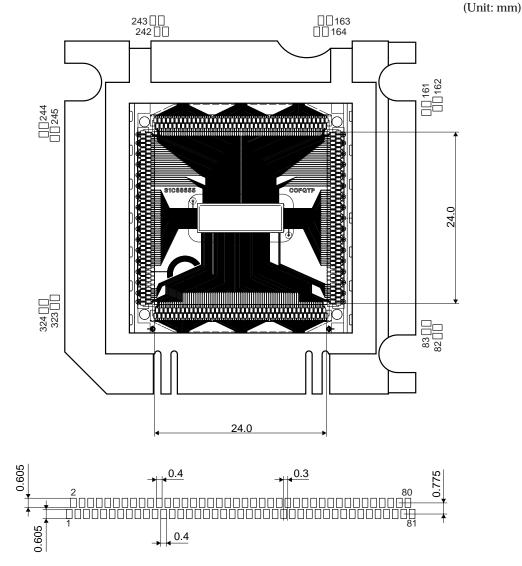

# • OSC1 oscillation frequency - resistor characteristic




# • OSC3 oscillation frequency - resistor characteristic

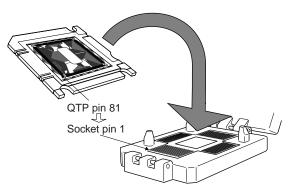
Ta = 25°C, Typ. value








# 20 PACKAGE FOR TEST SAMPLES


# S1C88655COFQTP



# Inserting QTP into the socket

Make sure the orientation of the carrier when inserting it into the socket.

Note: The analog characteristic values evaluated using a test sample may differ from those of the actual product due to the parasitic capacitance on the board and other conditions.

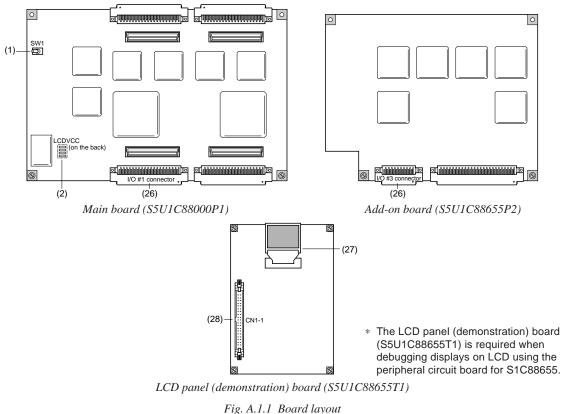


### 20 PACKAGE FOR TEST SAMPLES

# S1C88655COFQTP pin - pad correspondence table

|           | 000000010                        |                |                   |            | Jilesho          |                |                   |            |                  |                |                   |            |                  |                |                   |
|-----------|----------------------------------|----------------|-------------------|------------|------------------|----------------|-------------------|------------|------------------|----------------|-------------------|------------|------------------|----------------|-------------------|
| IC<br>Pad | Name                             | QTP<br>pin No. | Socket<br>pin No. | IC<br>Pad  | Name             | QTP<br>pin No. | Socket<br>pin No. | IC<br>Pad  | Name             | QTP<br>pin No. | Socket<br>pin No. | IC<br>Pad  | Name             | QTP<br>pin No. | Socket<br>pin No. |
| -         | -                                | 81             | 1                 | 91         | (N.C.)           | 324            | 82                | 161        | SEG24            | 243            | 163               | 241        | SEG104           | 162            | 244               |
| 11        | VDD                              | 80             | 2                 | 92         | (N.C.)           | 323            | 83                | 162        | SEG25            | 242            | 164               | 242        | SEG105           | 161            | 245               |
| 12        | OSC2                             | 79             | 3                 | 93         | (N.C.)           | 322            | 84                | 163        | SEG26            | 241            | 165               | 243        | SEG106           | 160            | 246               |
| 13        | OSC1                             | 78             | 4                 | 94         | (N.C.)           | 321            | 85                | 164        | SEG27            | 240            | 166               | 244        | SEG107           | 159            | 247               |
| 14<br>15  | Vss<br>VD1                       | 77<br>76       | 5<br>6            | 95<br>96   | (N.C.)<br>(N.C.) | 320<br>319     | 86<br>87          | 165<br>166 | SEG28<br>SEG29   | 239<br>238     | 167<br>168        | 245<br>246 | SEG108<br>SEG109 | 158<br>157     | 248<br>249        |
| 15        | OSC4                             | 75             | 7                 | 90         | (N.C.)           | 319            | 87                | 167        | SEG29<br>SEG30   | 238            | 168               | 240        | SEG109<br>SEG110 | 157            | 249               |
| 17        | OSC3                             | 74             | 8                 | 98         | (N.C.)           | 317            | 89                | 168        | SEG31            | 236            | 170               | 248        | SEG110           | 155            | 250               |
| 18        | TEST                             | 73             | 9                 | -          | -                | 316            | 90                | 169        | SEG32            | 235            | 171               | 249        | SEG112           | 154            | 252               |
| 19        | MCU/MPU                          | 72             | 10                | -          | -                | 315            | 91                | 170        | SEG33            | 234            | 172               | 250        | SEG113           | 153            | 253               |
| 20        | RESET                            | 71             | 11                | -          | -                | 314            | 92                | 171        | SEG34            | 233            | 173               | 251        | SEG114           | 152            | 254               |
| 21        | Vss                              | 70             | 12                | -          | -                | 313            | 93                | 172        | SEG35            | 232            | 174               | 252        | SEG115           | 151            | 255               |
| 22        | P27/FR/EXCL3                     | 69             | 13                | -          | -                | 312            | 94                | 173        | SEG36            | 231            | 175               | 253        | SEG116           | 150            | 256               |
| 23        | P26/CL/EXCL2                     | 68<br>67       | 14<br>15          | -          | -                | 311<br>310     | 95<br>96          | 174<br>175 | SEG37            | 230<br>229     | 176<br>177        | 254<br>255 | SEG117           | 149<br>148     | 257               |
| 24        | P25/BACK/EXCL1<br>P24/BREQ/EXCL0 | 66             | 15                | _          | _                | 309            | 96                | 175        | SEG38<br>SEG39   | 229            | 177               | 255        | SEG118<br>SEG119 | 148            | 258<br>259        |
| 26        | P23/TOUT2/TOUT3                  | 65             | 17                | -          | _                | 308            | 98                | 177        | SEG40            | 220            | 179               | 257        | SEG120           | 147            | 260               |
| 27        | P22/FOUT                         | 64             | 18                | -          | -                | 307            | 99                | 178        | SEG41            | 226            | 180               | 258        | SEG121           | 145            | 261               |
| 28        | P21/TOUT2/TOUT3                  | 63             | 19                | 99         | (N.C.)           | 306            | 100               | 179        | SEG42            | 225            | 181               | 259        | SEG122           | 144            | 262               |
| 29        | P20/TOUT0/TOUT1                  | 62             | 20                | 100        | (N.C.)           | 305            | 101               | 180        | SEG43            | 224            | 182               | 260        | SEG123           | 143            | 263               |
| 30        | P17/SRDY1                        | 61             | 21                | 101        | COM31            | 304            | 102               | 181        | SEG44            | 223            | 183               | 261        | SEG124           | 142            | 264               |
| 31        | P16/SCLK1                        | 60             | 22                | 102        | COM30            | 303            | 103               | 182        | SEG45            | 222            | 184               | 262        | SEG125           | 141            | 265               |
| 32        | P15/SOUT1<br>P14/SIN1            | 59             | 23                | 103        | COM29            | 302            | 104               | 183        | SEG46            | 221            | 185               | 263        | SEG126           | 140            | 266               |
| 33<br>34  | P14/SIN1<br>P13/SRDY0            | 58<br>57       | 24<br>25          | 104<br>105 | COM28<br>COM27   | 301<br>300     | 105<br>106        | 184<br>185 | SEG47<br>SEG48   | 220<br>219     | 186<br>187        | 264<br>265 | SEG127<br>(N.C.) | 139<br>138     | 267<br>268        |
| 35        | P12/SCLK0                        | 56             | 25                | 105        | COM27<br>COM26   | 299            | 108               | 185        | SEG48<br>SEG49   | 219            | 187               | 265        | (N.C.)           | 138            | 268               |
| 36        | P11/SOUT0                        | 55             | 20                | 100        | COM25            | 298            | 107               | 187        | SEG50            | 213            | 189               | _          | _                | 137            | 270               |
| 37        | P10/SIN0                         | 54             | 28                | 108        | COM24            | 297            | 100               | 188        | SEG51            | 216            | 190               | 267        | (N.C.)           | 135            | 271               |
| 38        | VDD                              | 53             | 29                | 109        | COM23            | 296            | 110               | 189        | SEG52            | 215            | 191               | 268        | (N.C.)           | 134            | 272               |
| 39        | P07/D7                           | 52             | 30                | 110        | COM22            | 295            | 111               | 190        | SEG53            | 214            | 192               | 269        | COM32            | 133            | 273               |
| 40        | P06/D6                           | 51             | 31                | 111        | COM21            | 294            | 112               | 191        | SEG54            | 213            | 193               | 270        | COM33            | 132            | 274               |
| 41        | P05/D5                           | 50             | 32                | 112        | COM20            | 293            | 113               | 192        | SEG55            | 212            | 194               | 271        | COM34            | 131            | 275               |
| 42        | P04/D4<br>P03/D3                 | 49<br>48       | 33<br>34          | 113<br>114 | COM19<br>COM18   | 292<br>291     | 114<br>115        | 193<br>194 | SEG56            | 211<br>210     | 195<br>196        | 272<br>273 | COM35<br>COM36   | 130<br>129     | 276<br>277        |
| 43        | P02/D2                           | 48             | 34                | 114        | COM18<br>COM17   | 291            | 115               | 194        | SEG57<br>SEG58   | 210            | 196               | 273        | COM36<br>COM37   | 129            | 277               |
| 45        | P01/D1                           | 46             | 36                | 115        | COM16            | 230            | 110               | 196        | SEG59            | 209            | 197               | 274        | COM38            | 120            | 278               |
| 46        | P00/D0                           | 45             | 37                | 117        | COM15            | 288            | 118               | 197        | SEG60            | 207            | 199               | 276        | COM39            | 126            | 280               |
| 47        | R00/A0                           | 44             | 38                | 118        | COM14            | 287            | 119               | 198        | SEG61            | 206            | 200               | 277        | COM40            | 125            | 281               |
| 48        | R01/A1                           | 43             | 39                | 119        | COM13            | 286            | 120               | 199        | SEG62            | 205            | 201               | 278        | COM41            | 124            | 282               |
| 49        | R02/A2                           | 42             | 40                | 120        | COM12            | 285            | 121               | 200        | SEG63            | 204            | 202               | 279        | COM42            | 123            | 283               |
| 50        | R03/A3                           | 41             | 41                | 121        | COM11            | 284            | 122               | -          | -                | 203            | 203               | 280        | COM43            | 122            | 284               |
| 51        | R04/A4<br>R05/A5                 | 40<br>39       | 42<br>43          | 122        | COM10<br>COM9    | 283            | 123               | 201        | SEG64<br>SEG65   | 202<br>201     | 204<br>205        | 281<br>282 | COM44<br>COM45   | 121<br>120     | 285               |
| 52<br>53  | R06/A6                           | 39             | 43                | 123<br>124 | COM9<br>COM8     | 282<br>281     | 124<br>125        | 202<br>203 | SEG65<br>SEG66   | 201            | 203               | 282        | COM45<br>COM46   | 120            | 286<br>287        |
| 54        | R07/A7                           | 37             | 44                | 124        | COM7             | 281            | 125               | 203        | SEG67            | 199            | 200               | 283        | COM40<br>COM47   | 119            | 287               |
| 55        | R10/A8                           | 36             | 46                | 126        | COM6             | 279            | 120               | 205        | SEG68            | 198            | 208               | 285        | COM48            | 117            | 289               |
| 56        | R11/A9                           | 35             | 47                | 127        | COM5             | 278            | 128               | 206        | SEG69            | 197            | 209               | 286        | COM49            | 116            | 290               |
| 57        | R12/A10                          | 34             | 48                | 128        | COM4             | 277            | 129               | 207        | SEG70            | 196            | 210               | 287        | COM50            | 115            | 291               |
| 58        | R13/A11                          | 33             | 49                | 129        | COM3             | 276            | 130               | 208        | SEG71            | 195            | 211               | 288        | COM51            | 114            | 292               |
| 59        | R14/A12                          | 32             | 50                | 130        | COM2             | 275            | 131               | 209        | SEG72            | 194            | 212               | 289        | COM52            | 113            | 293               |
| 60        | R15/A13                          | 31<br>30       | 51<br>52          | 131        | COM1             | 274<br>273     | 132<br>133        | 210<br>211 | SEG73            | 193<br>192     | 213<br>214        | 290<br>291 | COM53            | 112<br>111     | 294<br>295        |
| 61<br>62  | R16/A14<br>R17/A15               | 29             | 53                | 132<br>133 | COM0<br>(N.C.)   | 273            | 133               | 211 212    | SEG74<br>SEG75   | 192            | 214               | 291        | COM54<br>COM55   | 110            | 293<br>296        |
| 63        | R1//A15<br>R20/A16               | 29             | 54                | 133        | (N.C.)           | 272            | 134               | 212        | SEG75<br>SEG76   | 191            | 215               | 293        | COM55<br>COM56   | 109            | 290               |
| 64        | R21/A17                          | 27             | 55                | -          | -                | 270            | 136               | 214        | SEG77            | 189            | 217               | 294        | COM57            | 108            | 298               |
| 65        | R22/A18                          | 26             | 56                | 135        | (N.C.)           | 269            | 137               | 215        | SEG78            | 188            | 218               | 295        | COM58            | 107            | 299               |
| 66        | R23/A19                          | 25             | 57                | 136        | (N.C.)           | 268            | 138               | 216        |                  | 187            | 219               | 296        | COM59            | 106            | 300               |
| 67        | R24/RD                           | 24             | 58                | 137        | SEG0             | 267            | 139               | 217        | SEG80            | 186            | 220               | 297        | COM60            | 105            | 301               |
| 68        | R25/WR                           | 23             | 59                | 138        | SEG1             | 266            | 140               | 218        | SEG81            | 185            | 221               | 298        | COM61            | 104<br>103     | 302               |
| 69<br>70  | R30/CE0<br>R31/CE1               | 22<br>21       | 60<br>61          | 139<br>140 | SEG2<br>SEG3     | 265<br>264     | 141<br>142        | 219<br>220 | SEG82<br>SEG83   | 184<br>183     | 222<br>223        | 299<br>300 | COM62<br>COM63   | 103            | 303<br>304        |
| 70        | R31/CE1<br>R32/CE2               | 20             | 62                | 140        | SEG3             | 264            | 142               | 220        | SEG85<br>SEG84   | 185            | 223               | 301        | (N.C.)           | 102            | 304               |
| 72        | R32/CE2<br>R33/CE3               | 19             | 63                | 142        | SEG5             | 262            | 143               | 222        | SEG85            | 181            | 225               | 302        | (N.C.)           | 101            | 306               |
| 73        | (N.C.)                           | 18             | 64                | 143        | SEG6             | 261            | 145               | 223        | SEG86            | 180            | 226               | -          | -                | 99             | 307               |
| 74        | VDD                              | 17             | 65                | 144        | SEG7             | 260            | 146               | 224        | SEG87            | 179            | 227               | -          | -                | 98             | 308               |
| 75        | Vss                              | 16             | 66                | 145        | SEG8             | 259            | 147               | 225        | SEG88            | 178            | 228               | -          | -                | 97             | 309               |
| 76        | (N.C.)                           | 15             | 67                | 146        | SEG9             | 258            | 148               | 226        | SEG89            | 177            | 229               | -          | -                | 96             | 310               |
| 77        | CA3P                             | 14             | 68                | 147        | SEG10            | 257            | 149               | 227        | SEG90            | 176            | 230               | -          | -                | 95             | 311               |
| 78<br>79  | CA1M<br>CA1P                     | 13<br>12       | 69<br>70          | 148<br>149 | SEG11<br>SEG12   | 256<br>255     | 150<br>151        | 228<br>229 | SEG91<br>SEG92   | 175<br>174     | 231<br>232        | -          |                  | 94<br>93       | 312<br>313        |
| 80        | VD2                              | 12             | 70                | 149        | SEG12<br>SEG13   | 255            | 151               | 229        | SEG92<br>SEG93   | 174            | 232               | _          | _                | 93             | 313               |
| 81        | CA4P                             | 10             | 72                | 150        | SEG13            | 253            | 152               | 230        | SEG93<br>SEG94   | 173            | 233               | - 1        | (N.C.)           | 92             | 315               |
| 82        | CA2M                             | 9              | 73                | 152        | SEG15            | 255            | 155               | 232        | SEG95            | 172            | 235               | 2          | (N.C.)           | 90             | 316               |
| 83        | CA2P                             | 8              | 74                | 153        | SEG16            | 251            | 155               | 233        | SEG96            | 170            | 236               | 3          | (N.C.)           | 89             | 317               |
| 84        | VD2                              | 7              | 75                | 154        | SEG17            | 250            | 156               | 234        | SEG97            | 169            | 237               | 4          | (N.C.)           | 88             | 318               |
| 85        | Vss                              | 6              | 76                | 155        | SEG18            | 249            | 157               | 235        | SEG98            | 168            | 238               | 5          | (N.C.)           | 87             | 319               |
| 86        | Vci                              | 5              | 77                | 156        | SEG19            | 248            | 158               | 236        | SEG99            | 167            | 239               | 6          | (N.C.)           | 86             | 320               |
| 87        | Vc2                              | 4              | 78                | 157        | SEG20            | 247            | 159               | 237        | SEG100           | 166            | 240               | 7          | (N.C.)           | 85             | 321               |
| 88<br>89  | VC3<br>VC4                       | 3              | 79<br>80          | 158<br>159 | SEG21<br>SEG22   | 246<br>245     | 160<br>161        | 238<br>239 | SEG101<br>SEG102 | 165<br>164     | 241<br>242        | 8          | (N.C.)<br>(N.C.) | 84<br>83       | 322<br>323        |
| 89<br>90  | VC4<br>VC5                       | 2              | 80                | 159        | SEG22<br>SEG23   | 245            | 161               | 239        | SEG102<br>SEG103 | 164            | 242               | 10         | (N.C.)<br>(N.C.) | 83             | 323               |
|           |                                  | 1              | 01                | 100        | 52025            | 2-111          | 102               | 2-10       | 510105           | 105            | 245               | 10         | (11.0.)          | - 52           | 524               |

# APPENDIXA PERIPHERAL CIRCUIT BOARD FOR S1C88655


(*S5U1C88000P1* + *S5U1C88655P2* + *S5U1C88655T1*)

This manual describes how to use the Peripheral Circuit Board for S1C88655 (S5U1C88000P1 + S5U1C88655P2 + S5U1C88655T1). This circuit board is used to provide emulation functions when it is installed in the ICE (S5U1C88000H5), a debugging tool for the 8-bit Single Chip Microcomputer S1C88 Family. The explanation assumes that the S1C88655 circuit data has been downloaded into the S1C88 Family Peripheral Circuit Board (S5U1C88000P1).

For how to download circuit data into the S5U1C88000P1 and specifications of the boards, refer to Sections A.4 and A.6, respectively. For details on ICE functions and how to operate the debugger, refer to the separately prepared manuals.

# A.1 Names and Functions of Each Part

The following explains the names and functions of each part of the S5U1C88000P1, S5U1C88655P2 and S5U1C88655T1.



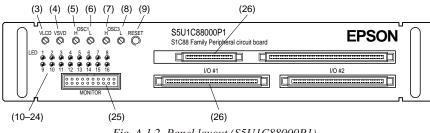



Fig. A.1.2 Panel layout (S5U1C88000P1)

### (1) SW1

When downloading circuit data, set this switch to the "3" position. Otherwise, set to position "1".

# (2) LCDVCC (on the back of the S5U1C88000P1 board) Unused.

However, make sure that the switches are set as a combination as shown in the table below.

| Та | Table A.1.1 Setting LCDVCC |     |     |     |  |  |  |  |
|----|----------------------------|-----|-----|-----|--|--|--|--|
|    | LCDVCC                     |     |     |     |  |  |  |  |
|    | 1                          | 2   | 3   | 4   |  |  |  |  |
|    | ON                         | OFF | OFF | ON  |  |  |  |  |
|    | OFF                        | ON  | OFF | OFF |  |  |  |  |

OFF OFF ON OFF

ON

OFF OFF OFF

# (3) VLCD control

Unused.

# (4) VSVD control

This control is used for varying the power supply voltage to confirm the supply voltage detection (SVD) function. (Refer to Section A.5.2, "Differences from Actual IC".)

# (5) OSC1 H control

This control is used for coarse adjustment of the OSC1 CR oscillation frequency.

# (6) OSC1 L control

This control is used for fine adjustment of the OSC1 CR oscillation frequency.

# (7) OSC3 H control

This control is used for coarse adjustment of the OSC3 CR oscillation frequency.

# (8) OSC3 L control

This control is used for fine adjustment of the OSC3 CR oscillation frequency.

# (9) RESET switch

This switch initializes the internal circuits of this board and feeds a reset signal to the ICE.

# (10) LED 1 (MPU/MCU)

Indicates the MPU or MCU mode. Lit: MPU mode Not lit: MCU mode

# (11) LED 2 (BUSMOD), LED 3 (CPUMOD)

Indicates the bus and CPU modes (BUSMOD/ CPUMOD register settings).

### Table A.1.2 Bus and CPU modes

| BUSMOD  | CPUMOD  | Bus mode    | CPU mode |
|---------|---------|-------------|----------|
| Lit     | Lit     | Expansion   | Maximum  |
| Lit     | Not lit |             | Minimum  |
| Not lit | Lit     | Single chip | Maximum  |
| Not lit | Not lit |             | Minimum  |

### (12) LED 4 (CLKCHG)

Indicates the CPU operating clock. Lit: OSC3 (CLKCHG register = "1") Not lit: OSC1 (CLKCHG register = "0")

# (13) LED 5 (SOSC1)

Indicates the OSC1 oscillation status.

- Lit: OSC1 oscillation is on
- (SOSC1 register = "1") Not lit: OSC1 oscillation is off
- (SOSC1 register = "0")

# (14) LED 6 (SOSC3)

Indicates the OSC3 oscillation status.

- Lit: OSC3 oscillation is on
  - (SOSC3 register = "1")
- Not lit: OSC3 oscillation is off (SOSC3 register = "0")

# (15) LED 7 (SVDON)

Indicates the SVD circuit status.

- Lit: SVD circuit is on
  - (SVDON register = "1")
- Not lit: SVD circuit is off
  - (SVDON register = "0")

# (16) LED 8 (LBON)

Indicates the supply voltage booster circuit status.

- Lit: Supply voltage booster circuit is on (LBON register = "1")
- Not lit: Supply voltage booster circuit is off (LBON register = "0")

# (17) LED 9 (VC5ON)

Indicates the VC5 voltage generator status. Lit: VC5 voltage generator is on

- (VC5ON register = "1")
- Not lit: Vc5 voltage generator is off (VC5ON register = "0")

# (18) LED 10 (VCON)

Indicates the VC1-4 voltage generator status.

- Lit: VC1-4 voltage generator is on (VCON register = "1")
- Not lit: VC1-4 voltage generator is off (VCON register = "0")

# (19) LED 11 (LCDON)

Indicates the LCD driver circuit status. Lit: LCD driver circuit is on (LCDON register = "1") Not lit: LCD driver circuit is off (LCDON register = "0")

# (20) LED 12 (HALT/SLEEP)

Indicates the CPU status. Lit: HALT or SLEEP Not lit: RUN

# (21) LED 13

Unused.

# (22) LED 14 (OSC1 operating clock)

The OSC1 operating clock is connected to this LED. The corresponding monitor pin (pin 14) can be used to check the OSC1 clock frequency.

# (23) LED 15 (OSC3 operating clock)

The OSC3 operating clock is connected to this LED. The corresponding monitor pin (pin 15) can be used to check the OSC3 clock frequency.

# (24) LED 16 (FPGA configuration)

If the FPGA on the S5U1C88000P1 includes circuit data, this LED lights when the power is turned on. If this LED does not light at powerup, a circuit data must be written to the FPGA before debugging can be started (turn the power on again after writing data).

# (25) LED signal monitor connector

This connector provides the signals that drive the LEDs shown above for monitoring. The signals listed below are output from the connector pins. The signal level is high when the LED is lit and is low when the LED is not lit.

| 19     | 17 | 15 | 13 | 11  | 9  | 7 | 5 | 3 | 1 |  |
|--------|----|----|----|-----|----|---|---|---|---|--|
| 0<br>0 | 0  | 0  | 0  | 000 | 0  | 0 | 0 | 0 | 0 |  |
| 20     | 18 | 16 | 14 | 12  | 10 | 8 | 6 | 4 | 2 |  |

Fig. A.1.3 LED signal monitor connector

Pin 1: LED 1 (MPU/MCU mode)

- Pin 2: LED 2 (Bus mode)
- Pin 3: LED 3 (CPU mode)
- Pin 4: LED 4 (CPU operating clock)
- Pin 5: LED 5 (OSC1 oscillation status)
- Pin 6: LED 6 (OSC3 oscillation status)
- Pin 7: LED 7 (SVD circuit status)

Pin 8: LED 8 (Supply voltage booster circuit status)

Pin 9: LED 9 (VC5 voltage generator status)

- Pin 10: LED 10 (Vc1-4 voltage generator status)
- Pin 11: LED 11 (LCD driver circuit status)
- Pin 12: LED 12 (HALT/SLEEP, RUN status)
- Pin 14: LED 14 (OSC1 operating clock) Pin 15: LED 15 (OSC3 operating clock)
- Pin 15: LED 15 (OSC3 operating clock)

Pin 18: OSC1 CR oscillation frequency monitor pin Pin 19: OSC3 CR oscillation frequency monitor pin

Pins 13, 16, 17 and 20 are not used. The CR oscillation clock is connected to pins 18 and 19. (The CR oscillation circuit on this board always operates even if crystal oscillation is selected by mask option and regardless of the SOSC1/3 register status.) These pins can be used to monitor CR oscillation when adjusting the oscillation frequency.

### (26) I/O #1, I/O #3 connectors

These are the connectors for connecting the I/O and LCD panel board. The I/O cables (80-pin/40-pin  $\times$  2 flat type, 40-pin/20-pin  $\times$  2 flat type) are used to connect to the target system.

# (27) LCD module (standard TCM)

This is a  $128 \times 64$ -dot LCD panel module using the standard TCM (see Appendix C). This LCD module has included an actual S1C88655 device, note, however, that the chip is configured to work as only an LCD driver using the device test function (unreleased).

# (28) ICE connector (CN1-1)

Connect between this connector and I/O #1 connector on the S5U1C88000P1 using the I/O cable (80-pin/40-pin  $\times$  2 flat type).

# A.2 Installation

# A.2.1 Installing S5U1C88655P2 to S5U1C88000P1

Aim the I/O connectors on the add-on board (S5U1C88655P2) at the front panel of the main board (S5U1C88000P1) and insert the four connectors on the back of the S5U1C88655P2 board into the corresponding connectors on the S5U1C88000P1 board.

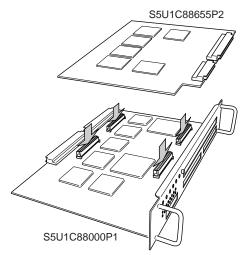
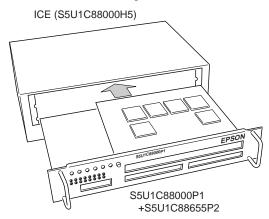
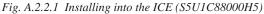





Fig. A.2.1.1 Installing S5U1C88655P2 to S5U1C88000P1

# A.2.2 Installing into the ICE (S5U1C88000H5)

Insert the S5U1C88000P1 along by the lower guide rail of the ICE (S5U1C88000H5), until the connectors fit into the ICE back-panel connectors.





Note: The S5U1C88000P1 and S5U1C88655P2 may fail to operate if they are not adequately mounted, so be sure to mount them securely.

# A.3 Connecting to the Target System

This section explains how to connect the S5U1C88000P1 + S5U1C88655P2 to the target system and the LCD panel board (S5U1C88655T1).

Note: Turn the power of all equipment off before connecting or disconnecting cables.

Use the I/O cables (80-pin/40-pin  $\times$  2 flat type, 40-pin/20-pin  $\times$  2 flat type) to connect the target system to the I/O #1 and I/O #3 connectors of the front panel. Connect the 80-pin and 40-pin cable connectors to the I/O #1 and I/O #3 connectors, respectively, and the CN1-2 connector of the 40-pin  $\times$  2 cable and the 20-pin  $\times$  2 cable connectors (CN3-1 and CN3-2) to the target system. The LCD panel board (S5U1C88655T1) is connected to the I/O #1 connector of the 40-pin  $\times$  2 cable. Be careful as power (VDD) is supplied to the I/O #1 and I/O #1 connector flat to the I/O #1 connector flat

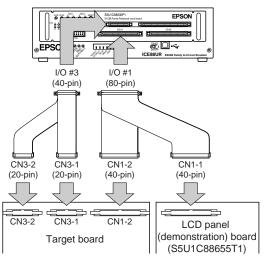



Fig. A.3.1 Connecting to the target system

The following shows the clock frequencies generated from the on-board crystal oscillation circuits:

OSC1 crystal oscillation circuit: 32.768 kHz OSC3 crystal oscillation circuit: 4.9152 MHz

When CR oscillation is selected, the oscillation frequency can be adjusted using the controls on the front panel (OSC1H and OSC1L for adjusting OSC1, OSC3H and OSC3L for adjusting OSC3). Use a frequency counter or other equipment to be connected to the OSC1 CR oscillation frequency monitor pin (pin 18) on the monitor connector or OSC3 CR oscillation frequency monitor pin (pin 19) for monitoring the frequency during adjustment. Be sure of the frequency when using this monitor pin because the CR oscillation frequency is initially undefined.

- Notes: The LCD panel board operating clock frequency is limited to that of the connected LCD module (standard TCM).
  - If the LCD panel is out of synchronization with the S5U1C88000P1 + S5U1C88655P2, reset the system using the RESET switch on the S5U1C88000P1.

### I/O connector pin assignment

Table A.3.1 I/O #1 connector

|     | 40-pin CN1-1 |          | 40-pin CN1-2 |
|-----|--------------|----------|--------------|
| No. | Pin name     | No.      | Pin name     |
| 1   | VDD (3.3 V)  | 1        | R10/A8       |
| 2   | VDD (3.3 V)  | 2        | R11/A9       |
| 3   | Vss          | 3        | R12/A10      |
| 4   | Vss          | 4        | R13/A11      |
| 5   | DMTAD0       | 5        | R14/A12      |
| 6   | DMTAD1       | 6        | R15/A13      |
| 7   | DMTAD2       | 7        | R16/A14      |
| 8   | DMTAD3       | 8        | R17/A15      |
| 9   | DMTAD4       | 9        | R20/A16      |
| 10  | DMTAD5       | 10       | R21/A17      |
| 11  | DMTAD6       | 11       | R22/A18      |
| 12  | DMTAD7       | 12       | R23/A19      |
| 13  | DMTAD8       | 13       | R24/RD       |
| 14  | DMTAD9       | 14       | R25/WR       |
| 15  | DMTAD10      | 15       | R30/CE0      |
| 16  | DMTAD11      | 16       | R31/CE1      |
| 17  | DMTAD12      | 17       | R32/CE2      |
| 18  | DMTAD13      | 18       | R33/CE3      |
| 19  | DMTAD14      | 19       | N.C.         |
| 20  | DMTAD15      | 20       | GND_IN       |
| 21  | N.C.         | 21       | OSC3EX       |
| 22  | DMTEB0       | 22       | GND_IN       |
| 23  | DMTEB1       | 23       | OSC1EX       |
| 24  | DMTEB2       | 24       | GND_IN       |
| 25  | DMTEB3       | 25       | N.C.         |
| 26  | DMTEB4       | 26       | N.C.         |
| 27  | DMTEB5       | 27       | N.C.         |
| 28  | DMTEB6       | 28       | N.C.         |
| 29  | DMTEB7       | 29       | N.C.         |
| 30  | N.C.         | 30       | N.C.         |
| 31  | DMT_XRESET   | 31       | N.C.         |
| 32  | N.C.         | 32       | N.C.         |
| 33  | DMT_PK       | 33       | N.C.         |
| 34  | DMT_PL       | 34       | N.C.         |
| 35  | DMT_I/O0     | 35       | N.C.         |
| 36  | DMT_I/O1     | 36       | N.C.         |
| 37  | DMT_I/O2     | 37       | N.C.         |
| 38  | DMT_I/O3     | 38       | N.C.         |
| 39  | DMT_DBS0     | 39<br>40 | N.C.         |
| 40  | DMT_DBS1     | 40       | N.C.         |

| Table A.3.2 I/O #3 connector | Table I | A.3.2 | I/O #3 | connector |
|------------------------------|---------|-------|--------|-----------|
|------------------------------|---------|-------|--------|-----------|

|     | 20-pin CN3-1    |     | 20-pin CN3-2 |
|-----|-----------------|-----|--------------|
| No. | Pin name        | No. | Pin name     |
| 1   | P20/TOUT0/TOUT1 | 1   | Vss          |
| 2   | P21/TOUT2/TOUT3 | 2   | Vss          |
| 3   | P22/FOUT        | 3   | P00/D0       |
| 4   | P23/TOUT2/TOUT3 | 4   | P01/D1       |
| 5   | P24/BREQ/EXCL0  | 5   | P02/D2       |
| 6   | P25/BACK/EXCL1  | 6   | P03/D3       |
| 7   | P26/CL/EXCL2    | 7   | P04/D4       |
| 8   | P27/FR/EXCL3    | 8   | P05/D5       |
| 9   | RESET           | 9   | P06/D6       |
| 10  | MCU/MPU         | 10  | P07/D7       |
| 11  | N.C.            | 11  | VDD (3.3 V)  |
| 12  | N.C.            | 12  | VDD (3.3 V)  |
| 13  | R00/A0          | 13  | P10/SIN0     |
| 14  | R01/A1          | 14  | P11/SOUT0    |
| 15  | R02/A2          | 15  | P12/SCLK0    |
| 16  | R03/A3          | 16  | P13/SRDY0    |
| 17  | R04/A4          | 17  | P14/SIN1     |
| 18  | R05/A5          | 18  | P15/SOUT1    |
| 19  | R06/A6          | 19  | P16/SCLK1    |
| 20  | R07/A7          | 20  | P17/SRDY1    |

Note: The pin names of the CN1-1 connector indicates the internal signals connected to the connector. This connector must be used to connect the LCD panel (demonstration) board (S5U1C88655T1).

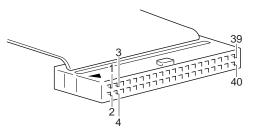



Fig. A.3.2 CN1-1/CN1-2 pin layout

# A.4 Downloading Circuit Data to the S5U1C88000P1

This board (S5U1C88000P1) comes with the FPGA that contains factory inspection data, therefore the circuit data for the model to be used should be downloaded. The following explains the downloading procedure.

- 1) Set the switch "SW1"\*1 on this board to the "3" position.
- 2) Install this board to the ICE (S5U1C88000H5) as shown in Section A.2.2.
- 3) Connect the ICE to the host PC. Then turn the host PC and ICE on.
- 4) Invoke the debugger included in the ICE or assembler package. For how to use the ICE and debugger, refer to the manuals supplied with the ICE and assembler package.
- 5) Download the circuit data file (.mcs) corresponding to the model by entering the following commands in the command window.

| >XFER |                       | (erase all)                 |
|-------|-----------------------|-----------------------------|
| >XFWR | <file name=""></file> | (download the specified     |
|       |                       | file)*2                     |
| >XFCP | <file name=""></file> | (compare the specified file |
|       |                       | and downloaded data)        |

- 6) Terminate the debugger and then turn the ICE off.
- 7) Remove this board from the ICE and set the switch "SW1" on the board to the "1" position.
- 8) Install this board to the ICE again.
- 9) Turn the ICE on and invoke the debugger again. Debugging can be started here.
- \*1 See Figure A.1.1, "Board layout", for the location of SW1.
- \*2 The downloading takes about 5 minutes.

# A.5 Precautions

Take the following precautions when using the Peripheral Circuit Board for S1C88655.

# A.5.1 Precaution for operation

- (1) Turn the power of all equipment off before connecting or disconnecting cables.
- (2) The mask option data must be loaded before debugging can be started.

# A.5.2 Differences from actual IC

Caution is called for due to the following function and property related differences with the actual IC. If these precautions are overlooked, it may not operate on the actual IC, even if it operates on the ICE in which the Peripheral Circuit Board for S1C88655 has been installed.

# (1) I/O differences

# Interface power voltage

This board and target system interface voltage is set to +3.3 V. To obtain the same interface voltage as in the actual IC, attach a level shifter or similar circuit on the target system side to accommodate the required interface voltage.

# Drive capability of each output port

The drive capability of each output port on this board is higher than that of the actual IC. When designing the application system and software, refer to Chapter 19, "Electrical Characteristics", to confirm the drive capability of each output port.

# Input port characteristics

The AC characteristic of the input terminal is different from that of the actual IC and it affects the input interrupt function. Therefore, evaluate the operation in the actual IC if the rise/fall time of the input signal is long.

# Protective diode of each port

All I/O ports incorporate a protective diode for VDD and Vss, and the interface signals between this board and the target system are set to +3.3 V. Therefore, this board and the target system cannot be interfaced with a voltage exceeding VDD even if the output ports are configured with open-drain output.

### Pull-up resistance value

The pull-up resistance values on this board are set to  $100 \text{ k}\Omega$  which differ from those for the actual IC. For the resistance values on the actual IC, refer to Chapter 19, "Electrical Characteristics".

Note that when using pull-up resistors to pull the input terminals high, the input terminals may require a certain period to reach a valid high level. Exercise caution if a key matrix circuit is configured using a combination of output and input ports, since rise delay times on these input ports differ from those of the actual IC.

# (2) Differences in current consumption

The amount of current consumed by this board differs significantly from that of the actual IC. Inspecting the LEDs on the S5U1C88000P1 front panel may help keep track of approximate current consumption. The following factors/components greatly affect device current consumption:

# Those which can be verified by LEDs and monitor pins

- Run and Halt execution ratio (verified by LEDs and monitor pins on the ICE)
- b) CPU operating clock change control (LED 4: monitor pin 4)
- c) OSC1 oscillation on/off control (LED 5: monitor pin 5)
- d) OSC3 oscillation on/off control (LED 6: monitor pin 6)
- e) SVD circuit on/off control (LED 7: monitor pin 7)
- f) Supply voltage booster circuit (LED 8: monitor pin 8)
- g) VC5 voltage generator (LED 9: monitor pin 9)
- h) VC1-4 voltage generator (LED 10: monitor pin 10)
- i) LCD control (LED 11: monitor pin 11)
- j) SLEEP and HALT execution ratio (LED 12: monitor pin 12)
- k) OSC1 operating clock (LED 14: monitor pin 14)
- l) OSC3 operating clock (LED 15: monitor pin 15)

# Those that can only be counteracted by system or software

- m) Current consumed by the internal pull-up resistors
- n) Input ports in a floating state

# (3) Functional precautions

# SVD circuit

- The SVD function is realized by artificially varying the power supply voltage using the VSVD control on the front panel of the S5U1C88000P1.
- There is a finite delay time from when the power to the SVD circuit turns on until actual detection of the voltage. The delay time on this board differs from that of the actual IC. Refer to Chapter 19, "Electrical Characteristics", when setting the appropriate wait time for the actual IC.
- The evaluation voltages supported in this board are different from those of the actual IC. When debugging the SVD operation using this board, evaluate the SVD results as levels not voltages.

# **Oscillation circuit**

- The OSC1 crystal oscillation frequency is fixed at 32.768 kHz.
- The OSC1 CR oscillation frequency can be adjusted in the range of approx. 20 kHz to 500 kHz using the control on the S5U1C88000P1 front panel. Note that the actual IC does not operate with all of these frequencies; refer to Chapter 19, "Electrical Characteristics", to select the appropriate operating frequency.
- The OSC3 crystal oscillation frequency is fixed at 4.9152 MHz.
- The OSC3 CR oscillation frequency can be adjusted in the range of approx. 100 kHz to 8 MHz using the control on the S5U1C88000P1 front panel. Note that the actual IC does not operate with all of these frequencies; refer to Chapter 19, "Electrical Characteristics", to select the appropriate operating frequency.
- The Peripheral Circuit Board for S1C88655 does not include the OSC3 ceramic oscillation circuit. When ceramic oscillation circuit is selected by mask option, the Peripheral Circuit Board for S1C88655 uses the on-board crystal oscillation circuit.
- When using an external clock, adjust the external clock (amplitude:  $3.3 V \pm 5\%$ , duty:  $50\% \pm 10\%$ ) and input to the OSC1EX or OSC3EX terminal with Vss as GND. Moreover, the GND\_IN terminals adjacent to the OSC1EX and OSC3EX terminals should be connected to the GND line in order to stabilize the clock waveforms.

- This board can operate normally even when the CPU clock is switched to OSC3 (CLKCHG = "1") immediately after the OSC3 oscillation control circuit is turned on (SOSC3 = "1") without a wait time inserted. In the actual IC, an oscillation stability wait time is required before switching the CPU clock after the OSC3 oscillation is turned on. Refer to Chapter 19, "Electrical Characteristics", when setting the appropriate wait time for the actual IC.
- This board can operate normally even when the CPU clock is switched to OSC1 (CLKCHG = "0") immediately after the OSC1 oscillation control circuit is turned on (SOSC1 = "1") without a wait time inserted. In the actual IC, an oscillation stability wait time is required before switching the CPU clock after the OSC1 oscillation is turned on. Refer to Chapter 19, "Electrical Characteristics", when setting the appropriate wait time for the actual IC.
- This board starts operating without waiting for an oscillation start time after SLEEP status is cancelled.
- Use separate instructions to switch the clock from OSC3 to OSC1 and to turn off the OSC3 oscillation circuit. If executed simultaneously with a single instruction, these operations, although good with this board, may not function properly with the actual IC.
- This board contains oscillation circuits for OSC1 and OSC3. Keep in mind that even though the actual IC may not have a resonator connected to its OSC3, this board can operate with the OSC3 circuit.
- Because the logic level of the oscillation circuit is high, the timing at which the oscillation starts on this board differs from that of the actual IC.

### Access to undefined address space

If any undefined space in the S1C88655's internal ROM/RAM or I/O is accessed for data read or write operations, the read/written value is indeterminate. Additionally, it is important to remain aware that the indeterminate state differs between the Peripheral Circuit Board for S1C88655 and the actual IC.

### **Reset circuit**

Keep in mind that the operation sequence from when the ICE with this board installed is powered on until the time at which the program starts running differs from the sequence of the actual IC. This is because this board becomes capable of operating as a debugging system after the user program and optional data are downloaded.

### Internal power supply circuit

The LCD drive voltage on this board is different from that on the actual IC.

#### **Function option**

• Input interface level

The actual IC allows selection of the input interface level for P10–P17 and P20–P27 either COMS level or CMOS Schmitt level by a function option. This board supports CMOS level only and selection of the function option using Winfog does not affect the interface level of this board.

# (4) Notes on model support

### Parameter file

The ROM, RAM and I/O spaces in the ICE with this board installed are configured when the debugger on the personal computer starts up using the parameter file (88655.par) provided for each model.

The parameter file allows the user to modify its contents according to the ROM and RAM spaces actually used. Do not configure areas other than below when using the IC in single chip maximum mode.

| ROM area:   | 0000H to BFFFH   |
|-------------|------------------|
|             | 10000H to 8FFFFH |
| RAM area:   | C000H to E3FFH   |
|             | E800H to EBFFH   |
| Stack area: | C000H to DFFFH   |

### Access disable area

When using this board for development of an S1C88655 application, be sure not to read and write from/to I/O memory addresses FF22H and FFC0H to FFDDH. Furthermore, do not change the initial values when writing to bit D4 of address FF23H.

# A.6 Product Specifications

| A.6.1 S5U1C88000P1 specifications                                                                        | A.6.2 S5U1C88655P2 specifications                                                                                                                |                                                             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|
| <b>S5U1C88000P1</b><br>Dimensions (mm):                                                                  | <b>S5U1C88655P2</b><br>Dimensions (mm):                                                                                                          |                                                             |  |  |  |  |
| 247.5 (wide) × 165 (depth) × 44.6                                                                        | 184 (W) $\times$ 152 (D) $\times$ 20 (H)                                                                                                         |                                                             |  |  |  |  |
| Weight:<br>Approx. 500 g<br>Power supply:<br>DC 5 V ± 5%, less than 1 A<br>(supplied from ICE main unit) | I/O cable (100-pin/50-pin x 2)<br>S5U1C88655P2 connector (100-pin):<br>KEL 8830E-100-170L-F<br>Cable connector (100-pin):<br>KEL 8822E-100-171-F |                                                             |  |  |  |  |
| I/O connection cable (80-pin/40-pin x 2, 2                                                               | Cable connector (50-pin):                                                                                                                        |                                                             |  |  |  |  |
| S5U1C88000P1 connector (80-pin):<br>KEL 8830E-080-170L, or equiv                                         | Connector 3M 7950-6500SC<br>Strain relief 3M 3448-7950                                                                                           |                                                             |  |  |  |  |
| Cable connector (80-pin):                                                                                |                                                                                                                                                  | Cable:                                                      |  |  |  |  |
| KEL 8822E-080-171                                                                                        | $\times 1$                                                                                                                                       | 50-pin flat cable                                           |  |  |  |  |
| Cable connector (40-pin):                                                                                |                                                                                                                                                  | Interface:                                                  |  |  |  |  |
| 3M 7940-6500SC                                                                                           | imes 2                                                                                                                                           | CMOS interface (3.3 V)                                      |  |  |  |  |
| Cable:                                                                                                   | 0                                                                                                                                                | Length:                                                     |  |  |  |  |
| 40-pin flat cable                                                                                        | imes 2                                                                                                                                           | Approx. 40 cm                                               |  |  |  |  |
| Interface:<br>CMOS interface (3.3 V)                                                                     |                                                                                                                                                  | I/O cable (40-pin/20-pin x 2)                               |  |  |  |  |
| Length:                                                                                                  |                                                                                                                                                  | S5U1C88655P2 connector (40-pin):                            |  |  |  |  |
| Approx. 40 cm                                                                                            |                                                                                                                                                  | KEL 8830E-040-170L-F<br>Cable connector (40-pin):           |  |  |  |  |
| Monitor signal cable                                                                                     |                                                                                                                                                  | KEL 8822E-040-171-F                                         |  |  |  |  |
| S5U1C88000P1 connector:                                                                                  |                                                                                                                                                  | Cable connector (20-pin):                                   |  |  |  |  |
| 3M 7610-5002SC, or equivalen                                                                             | t                                                                                                                                                | Connector 3M 7920-6500SC                                    |  |  |  |  |
| Cable connector (10-pin):                                                                                |                                                                                                                                                  | Strain relief 3M 3448-7920                                  |  |  |  |  |
| 3M 7910-6500SC                                                                                           | $\times 1$                                                                                                                                       | Cable:                                                      |  |  |  |  |
| Interface:                                                                                               |                                                                                                                                                  | 20-pin flat cable                                           |  |  |  |  |
| CMOS interface (3.3 V)                                                                                   |                                                                                                                                                  | Interface:                                                  |  |  |  |  |
| Length:                                                                                                  |                                                                                                                                                  | CMOS interface (3.3 V)                                      |  |  |  |  |
| Approx. 40 cm                                                                                            |                                                                                                                                                  | Length:                                                     |  |  |  |  |
| Accessories                                                                                              |                                                                                                                                                  | Approx. 40 cm                                               |  |  |  |  |
|                                                                                                          |                                                                                                                                                  | Accessories                                                 |  |  |  |  |
| 40-pin connector for the target syste<br>3M 3432-6002LCSC                                                | × 4                                                                                                                                              | 50-pin connector for the target system:<br>3M 3433-6002LCPL |  |  |  |  |
|                                                                                                          |                                                                                                                                                  | 20-pin connector for the target system:                     |  |  |  |  |

imes 2imes 2

 $\times 1$ 

 $rac{ imes 2}{ imes 2}$ 

 $\times 1$ 

 $\times 1$ 

 $\begin{array}{c} \times \, 2 \\ \times \, 2 \end{array}$ 

imes 1

# A.6.3 S5U1C88655T1 specifications

3M 3428-6002LCPL

# S5U1C88655T1

Dimensions (mm): 100 (W) × 150 (D) × 38 (H)

### S5U1C88655T1 connector 3M 3433-6002LCPL

3M 3433-6002LCPL

### Interface

CMOS interface (3.3 V)

User-developed program

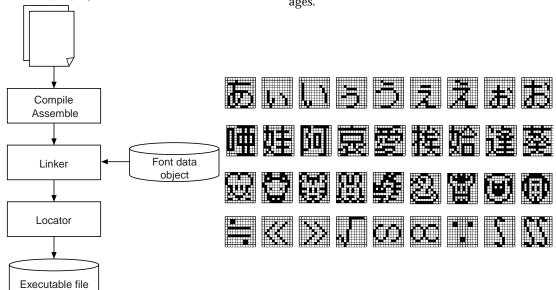
# APPENDIX B USING FONT DATA

Font packages that can be used to display on LCD are provided for the S1C88655.

The package contains a sample program that runs on the S1C88-Family microcomputer to display this font data on an LCD, an application note for the sample program, and a bitmap utility that can be used to create custom font data.

The font data is supplied in an object file format (assembler output file identified by the extension .obj) to enable it to be embedded in the S1C88-Family microcomputer programs. Simply by linking this object file to the created application program, the font data can be used easily.

- Notes: Before the font data included with the package and the typefaces shown in the manual can be used, a contract for a license to use the typefaces must be concluded between Seiko Epson and the purchaser.
  - The programs necessary to obtain font data from the character codes and display the font data on an LCD must be created by the user.


# List of font packages

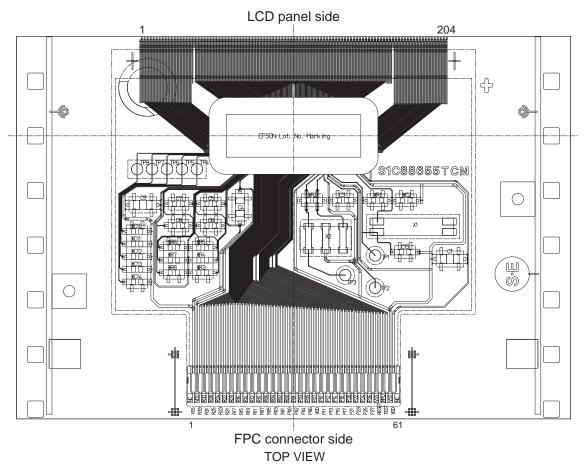
(KSX1001)

# • S5U1C88655R1

12 × 12-dot Japanese font (JIS level-1 and level-2, other characters) • **S5U1C88655R3** 12 × 12-dot Korean font

Please contact Seiko Epson for other font packages.




# APPENDIX C TCM

TCM is a packaging method that mounts constituents such as IC and SMT (Surface Mount Technology) parts on an FPC (Flexible Printed Circuit) tape. Using a flexible FPC tape, which is adequate to narrow space mounting, as a printed-circuit board makes it possible to reduce size, weight and profile of the products. TCM is provided as the standard packaging form for the S1C88655 and the standard TCM has been released. Furthermore, Seiko Epson accepts orders for developing custom TCMs with the product specifications implemented. Please contact us for details of the standard TCM specifications and custom TCM development.

# S1C88655 standard TCM specifications

- 1. OSC1 oscillation circuit CR (RCR1 =  $1.5 \text{ M}\Omega$ )
- 2. OSC3 oscillation circuit CR (RCR3 =  $39 \text{ k}\Omega$ )
- 3. Input port pull-up resistors <u>RESET</u> With pull-up resistor MCU/<u>MPU</u> With pull-up resistor
- 4. I/O port pull-up resistors P00–07, 10–17, 20–27 With pull-up resistor
- 5. I/O port input interface level P10-13, 20-23 CMOS Schmitt level P14-17, 24-27 CMOS level
- 6. Reset voltage detector Used
- 7. Watchdog timer overflow cycle 32768/fosc1
- 8. Watchdog timer overflow signal Interrupt (NMI)
- 9. Voltage booster Quintuple boosting circuit configuration
- 10. LCD panel size  $128 \times 64$
- 11. LCD panel specifications A panel with  $Vc_5 = 7 V$  and 1/9 bias specifications is recommended.

# APPENDIX C TCM



# Standard TCM outline drawing (die-cut pattern before assembly)

\* Recommended FPC connectors: FH23 series (Hirose Electric Co., LTD.)

# Standard TCM pin layout

|          | panel sid      | · · · | ,              |     |                  |     |                | 1 |     | connecto   |     | · `     |
|----------|----------------|-------|----------------|-----|------------------|-----|----------------|---|-----|------------|-----|---------|
| No.      | Name           | No.   | Name           | No. | Name             | No. | Name           |   | No. | Name       | No. | Name    |
| 1        | N.C.           | 52    | SEG15          | 103 | SEG66            | 154 | SEG117         |   | 1   | N.C.       | 52  | P25     |
| 2        | N.C.           | 53    | SEG16          | 104 | SEG67            | 155 | SEG118         |   | 2   | Vss        | 53  | P26     |
| 3        | N.C.           | 54    | SEG17          | 105 | SEG68            | 156 | SEG119         |   | 3   | VDD        | 54  | P27     |
| 4        | COM31          | 55    | SEG18          | 106 | SEG69            | 157 | SEG120         |   | 4   | R33        | 55  | Vss     |
| 5        | COM30          | 56    | SEG19          | 107 | SEG70            | 158 | SEG121         |   | 5   | R32        | 56  | RESET   |
| 6        | COM29          | 57    | SEG20          | 108 | SEG71            | 159 | SEG122         |   | 6   | R31        | 57  | MCU/MPU |
| 7        | COM28          | 58    | SEG21          | 109 | SEG72            | 160 | SEG123         |   | 7   | R30        | 58  | TEST    |
| 8        | COM27          | 59    | SEG22          | 110 | SEG73            | 161 | SEG124         |   | 8   | R25        | 59  | Vss     |
| 9        | COM26          | 60    | SEG23          | 111 | SEG74            | 162 | SEG125         |   | 9   | R24        | 60  | VDD     |
| 10       | COM25          | 61    | SEG24          | 112 | SEG75            | 163 | SEG126         |   | 10  | R23        | 61  | N.C.    |
| 11       | COM24          | 62    | SEG25          | 113 | SEG76            | 164 | SEG127         |   | 11  | R22        |     |         |
| 12       | COM23          | 63    | SEG26          | 114 | SEG77            | 165 | N.C.           |   | 12  | R21        |     |         |
| 13       | COM22          | 64    | SEG27          | 115 | SEG78            | 166 | N.C.           |   | 13  | R20        |     |         |
| 14       | COM21          | 65    | SEG28          | 116 | SEG79            | 167 | N.C.           |   | 14  | R17        |     |         |
| 15       | COM20          | 66    | SEG29          | 117 | SEG80            | 168 | N.C.           |   | 15  | R16        |     |         |
| 16       | COM19          | 67    | SEG30          | 118 | SEG81            | 169 | COM32          |   | 16  | R15        |     |         |
| 17       | COM18          | 68    | SEG30          | 119 | SEG82            | 170 | COM32          |   | 17  | R14        |     |         |
| 18       | COM17          | 69    | SEG32          | 120 | SEG83            | 171 | COM35          |   | 18  | R13        |     |         |
| 19       | COM16          | 70    | SEG32<br>SEG33 | 120 | SEG85<br>SEG84   | 172 | COM34<br>COM35 |   | 19  | R13        |     |         |
| 20       | COM15          | 71    | SEG33<br>SEG34 | 121 | SEG85            | 172 | COM35<br>COM36 |   | 20  | R12<br>R11 |     |         |
| 20       | COM13<br>COM14 | 72    | SEG34<br>SEG35 | 122 | SEG85<br>SEG86   | 173 | COM30<br>COM37 |   | 20  | R10        |     |         |
| 21<br>22 |                | 72    |                | 123 |                  | 174 |                |   | 21  | R10<br>R07 |     |         |
|          | COM13          |       | SEG36<br>SEG37 |     | SEG87            |     | COM38          |   |     |            |     |         |
| 23       | COM12          | 74    |                | 125 | SEG88            | 176 | COM39          |   | 23  | R06        |     |         |
| 24       | COM11          | 75    | SEG38          | 126 | SEG89            | 177 | COM40          |   | 24  | R05        |     |         |
| 25       | COM10          | 76    | SEG39          | 127 | SEG90            | 178 | COM41          |   | 25  | R04        |     |         |
| 26       | COM9           | 77    | SEG40          | 128 | SEG91            | 179 | COM42          |   | 26  | R03        |     |         |
| 27       | COM8           | 78    | SEG41          | 129 | SEG92            | 180 | COM43          |   | 27  | R02        |     |         |
| 28       | COM7           | 79    | SEG42          | 130 | SEG93            | 181 | COM44          |   | 28  | R01        |     |         |
| 29       | COM6           | 80    | SEG43          | 131 | SEG94            | 182 | COM45          |   | 29  | R00        |     |         |
| 30       | COM5           | 81    | SEG44          | 132 | SEG95            | 183 | COM46          |   | 30  | P00        |     |         |
| 31       | COM4           | 82    | SEG45          | 133 | SEG96            | 184 | COM47          |   | 31  | P01        |     |         |
| 32       | COM3           | 83    | SEG46          | 134 | SEG97            | 185 | COM48          |   | 32  | P02        |     |         |
| 33       | COM2           | 84    | SEG47          | 135 | SEG98            | 186 | COM49          |   | 33  | P03        |     |         |
| 34       | COM1           | 85    | SEG48          | 136 | SEG99            | 187 | COM50          |   | 34  | P04        |     |         |
| 35       | COM0           | 86    | SEG49          | 137 | SEG100           | 188 | COM51          |   | 35  | P05        |     |         |
| 36       | N.C.           | 87    | SEG50          | 138 | SEG101           | 189 | COM52          |   | 36  | P06        |     |         |
| 37       | SEG0           | 88    | SEG51          | 139 | SEG102           | 190 | COM53          |   | 37  | P07        |     |         |
| 38       | SEG1           | 89    | SEG52          | 140 | SEG103           | 191 | COM54          |   | 38  | VDD        |     |         |
| 39       | SEG2           | 90    | SEG53          | 141 | SEG104           | 192 | COM55          |   | 39  | P10        |     |         |
| 40       | SEG3           | 91    | SEG54          | 142 | SEG105           | 193 | COM56          |   | 40  | P11        |     |         |
| 41       | SEG4           | 92    | SEG55          | 143 | SEG106           | 194 | COM57          |   | 41  | P12        |     |         |
| 42       | SEG5           | 93    | SEG56          | 144 | SEG107           | 195 | COM58          |   | 42  | P13        |     |         |
| 43       | SEG6           | 94    | SEG57          | 145 | SEG108           | 196 | COM59          |   | 43  | P14        |     |         |
| 44       | SEG7           | 95    | SEG58          | 146 | SEG109           | 197 | COM60          |   | 44  | P15        |     |         |
| 45       | SEG8           | 96    | SEG59          | 147 | SEG110           | 198 | COM61          |   | 45  | P16        |     |         |
| 46       | SEG9           | 97    | SEG60          | 148 | SEG111           | 199 | COM62          |   | 46  | P17        |     |         |
| 47       | SEG10          | 98    | SEG61          | 149 | SEG112           | 200 | COM62          |   | 47  | P20        |     |         |
| 48       | SEG10<br>SEG11 | 99    | SEG61<br>SEG62 | 150 | SEG112<br>SEG113 | 200 | N.C.           |   | 48  | P21        |     |         |
| 49       | SEG11<br>SEG12 | 100   | SEG62<br>SEG63 | 150 | SEG113<br>SEG114 | 201 | N.C.           |   | 49  | P22        |     |         |
| 50       | SEG12<br>SEG13 | 100   | SEG63<br>SEG64 | 151 | SEG114<br>SEG115 | 202 | N.C.           |   | 50  | P23        |     |         |
| 50<br>51 | SEG13<br>SEG14 | 101   | SEG64<br>SEG65 | 152 | SEG115<br>SEG116 | 203 | N.C.           |   | 51  | P24        |     |         |

# **EPSON**

# **International Sales Operations**

# AMERICA

#### **EPSON ELECTRONICS AMERICA, INC.**

#### **HEADQUARTERS**

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-800-228-3964 Fax: +1-408-922-0238

### SALES OFFICE

Northeast 301 Edgewater Place, Suite 210 Wakefield, MA 01880, U.S.A. Phone: +1-800-922-7667 Fax: +1-781-246-5443

# **EUROPE**

### EPSON EUROPE ELECTRONICS GmbH

### HEADQUARTERS

Riesstrasse 15 80992 Munich, GERMANY Phone: +49-89-14005-0 Fax: +49-89-14005-110

### DÜSSELDORF BRANCH OFFICE

Altstadtstrasse 176 51379 Leverkusen, GERMANY Phone: +49-2171-5045-0 Fax: +49-2171-5045-10

#### FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-1-64862350 Fax: +33-1-64862355

#### **UK & IRELAND BRANCH OFFICE**

8 The Square, Stockley Park, Uxbridge Middx UB11 1FW, UNITED KINGDOM Phone: +44-1295-750-216/+44-1342-824451 Fax: +44-89-14005 446/447

#### Scotland Design Center

Integration House, The Alba Campus Livingston West Lothian, EH54 7EG, SCOTLAND Phone: +44-1506-605040 Fax: +44-1506-605041

# ASIA

### EPSON (CHINA) CO., LTD.

23F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA Phone: +86-10-6410-6655 Fax: +86-10-6410-7320

#### SHANGHAI BRANCH

7F, High-Tech Bldg., 900, Yishan Road Shanghai 200233, CHINA Phone: +86-21-5423-5522 Fax: +86-21-5423-5512

#### EPSON HONG KONG LTD.

20/F, Harbour Centre, 25 Harbour Road Wanchai, Hong Kong Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX

# EPSON Electronic Technology Development (Shenzhen) LTD.

12/F, Dawning Mansion, Keji South 12th Road Hi- Tech Park, Shenzhen Phone: +86-755-2699-3828 Fax: +86-755-2699-3838

#### EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road Taipei 110 Phone: +886-2-8786-6688 Fax: +886-2-8786-6677

#### **EPSON SINGAPORE PTE., LTD.**

1 HarbourFront Place #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 Fax: +65-6271-3182

#### SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: +82-2-784-6027 Fax: +82-2-767-3677

#### **GUMI OFFICE**

2F, Grand B/D, 457-4 Songjeong-dong Gumi-City, KOREA Phone: +82-54-454-6027 Fax: +82-54-454-6093

### SEIKO EPSON CORPORATION SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept. IC International Sales Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 Fax: +81-42-587-5117

# SEIKO EPSON CORPORATION SEMICONDUCTOR OPERATIONS DIVISION

EPSON Electronic Devices Website

http://www.epsondevice.com

Document code: 410757500 Issue September, 2006 Printed in Japan ©A