

High Performance IMUs and Accelerometers

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit. This product is not designed to be used in the equipment that demands extremely high reliability and where its failure may threaten human life or property (for example, aerospace equipment, submarine repeater, nuclear power control equipment, life support equipment, medical equipment, transportation control equipment, etc.). Therefore, Seiko Epson Corporation will not be liable for any damages caused by the use of the product for those applications. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©SEIKO EPSON CORPORATION 2017, All rights reserved.

Index

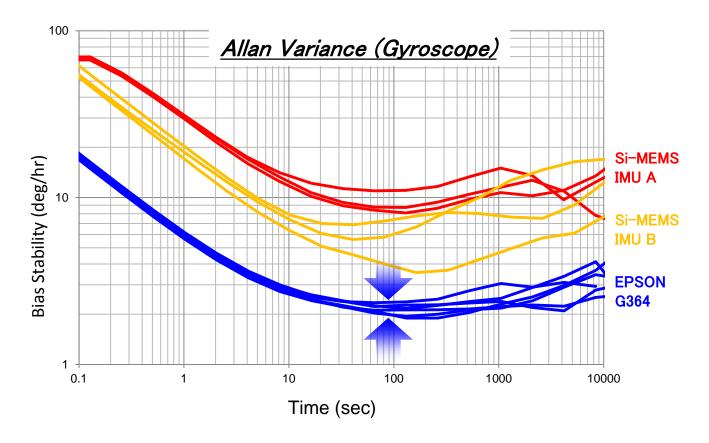
IMU Product Line-up	03
Accelerometer Product Line-up	04
Sensing Technology	
Crystal Sensing Technology	05
IMU	06
High Reliability Platform	07
Accelerometer	08
IMU (Inertial Measurement Unit)	
M-G364	11
M-G354	13
M-V340	15
M-G550PC2	17
Accelerometer	
M-A351AU/AS	21
M-A550AC2	23
M-A550AR2	25
Application Examples	
IMU	27
Accelerometer	28
Evaluation Kit	29
■ Global Network	30

IMU Product Line-up

- M-G364 : High Stability IMU
- M-G354 : Wide Dynamic Range IMU
- M-V340 : Small and Light Weight IMU
- M-G550PC2 : Water and Dust Proof IMU with CAN Interface

			M-G364	M-G354	M−V340	M-G550PC2
	Features		High Stability Wide Range		Small and Light Weight	Water and Dust Proof
	Interface			SPI/UART		CANopen
Gy	Dynamic Range	deg/s	$\pm 100/\pm 200$	±450	±450	±150
Gyroscope	Bias Instability	deg/hr	2.2	3	3.5	3.5
pe	Angular Random Walk	deg∕√Hz	0.09	0.2	0.17	0.1
Accelerom eter	Dynamic Range	G	±3	±5	±5.8	±5
celerom eter	Bias Instability	mG	0.05	0.07	0.05	0.1
Misalignment (Gyro / Accelerometer)		Deg	0.02/0.01	0.02/0.01	0.1/0.2	0.05/0.1
Oper	ating Temperature	°C	-40 to +85			-40 to +70
Pov	wer Consumption	mA(typ)	1	8	16.5	26.5 @12V
	Power Supply V			3.3		9 to 30
	Size Mm		24x2	4x10	10x12x4	52x52x26
	Weight Grams		1	0	1	81
Functions		Out	Delta Velocity put, ger Input, etc	External Trigger Input, etc	IP67	
Product Image		C. Little	and a state	VSAO E. com	C C C C C C C C C C C C C C C C C C C	

Accelerometer Product Line-up


- M-A351AU : Built-in Type, UART Interface
- M-A351AS : Built-in Type, SPI Interface
- M-A550AC2 : Water and Dust Proof, CAN Interface
- M-A550AR2 : Water and Dust Proof, RS422 Interface

		M-A351AU	M-A351AS	M-A550AC2	M-A550AR2	
Features		Built-in Type		Water and Dust Proof (IP67)		
Interface		UART	SPI	CANopen	RS422	
Noise Density	uG∕√Hz		0.5 (Av	verage)		
Input Range	G		±	:5		
Axis			3Axis (X/Y/Z)		
Bandwidth	Hz	100	50	5	0	
Output Rate	Sps	1,000	500	500		
Resolution	uG/LSB	0.06				
Operating Temperature	°C	-20 t	o +85	-20 t	o +70	
Power Consumption	mA(typ)	2	0	24 @12V	16 @12V	
Power Supply	V	3	.3	9 to	o 30	
Size	mm	24×2	4x19	52x5	2x26	
Weight	grams	1	2	8	1	
Output Mode		Acceleration, Tilt Angle, Tilt Angle Speed (Selectable on each axis				
Product Image	9	the second	4	To some	E	

-4-

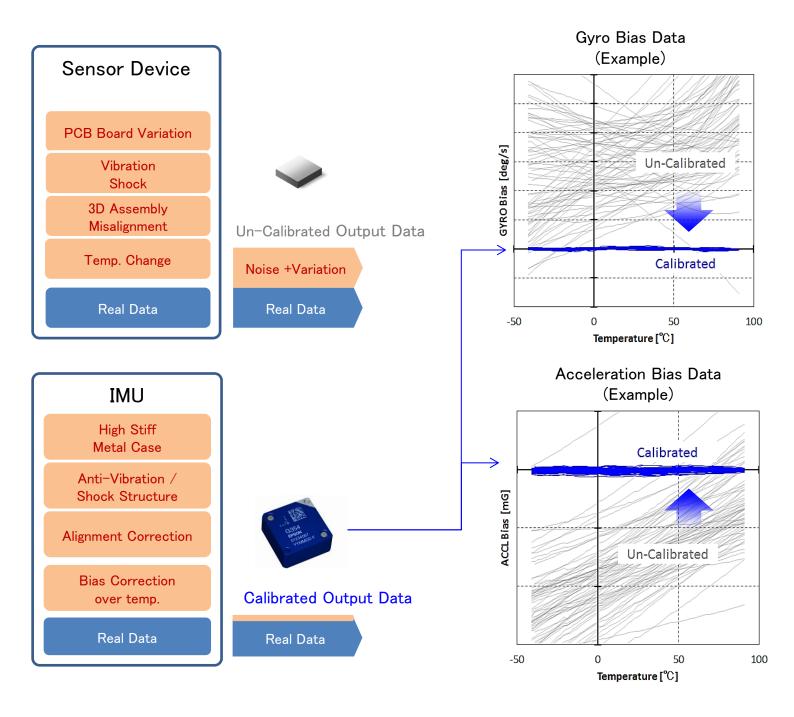
Crystal Sensing Technology

By using crystal sensor element based on Epson's proprietary micro-fabrication technology, we realized compact, highly accurate, and highly stable IMU / accelerometer by making use of the exceptional properties of crystal material (high stability and low noise). In addition, by using superior processing technology to achieve high performance with low variation, we overcome the challenge of accuracy variability, and stable supply of final products.

Low Power Dedicated SoC

EPSON' s IMUs utilize dedicated SoC (System-on-Chip) to reduce power 50% and integrate 50% of the peripheral discrete components compared to our previous generation IMUs such as M-G350.

M-G364/354 Power Consumption: 18mA (typ) @ 3.3V


0	144		1
		:::	
100			00
		•••	-01
		• • •	

■ IMU (Inertial Measurement Unit)

A device which detects the inertial motion with high accuracy, composed of 3 axis gyroscope and 3 axis accelerometer. IMUs are mainly used for the purpose of measuring and controlling the motion or attitude of a moving body.

IMU and Sensor Device

In actual operating environments, the accuracy of sensor device output data deteriorates because of various external and internal influences (board variation, vibration & shock, misalignment, temperature change etc.), but the IMU has various correction functions to reduce errors and output stable and accurate sensing data.

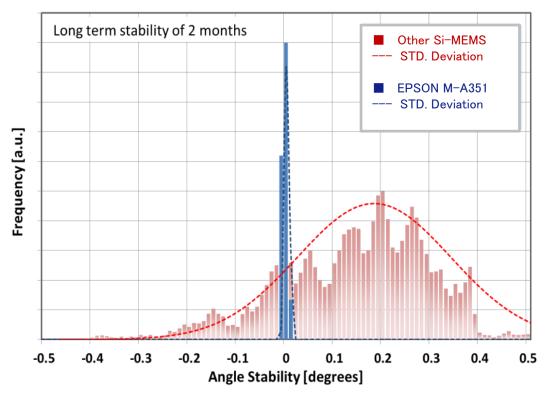
IMU

High Reliability G3X Platform

G3X Platform (M–G364/M–G354) is 1inch square small form factor, designed to bring out stable performance even under unstable environment.

New products planned for the future will also use the same G3X platform. The compatibility of hardware and software interfaces will bring the improvement of the performance simply by replacing the IMU, reducing the development cost, engineering resource, and evaluation time of the customer.

Robust IMU (CAN INTERFACE)

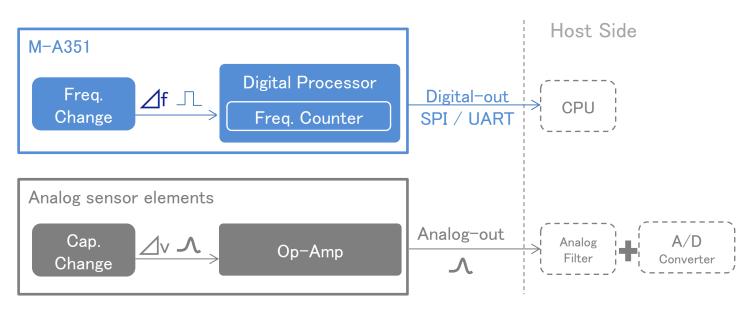

M-**G550PC**·**M**-**A550AC** are water and dust proof sensors with CAN interface. Complex measurements such as synchronous measurement by multiple sensors can be easily constructed by simply connecting to a standard CAN controller. A wide range of applications from applied research applications to constant monitoring of outdoor structures are supported.

Accelerometer

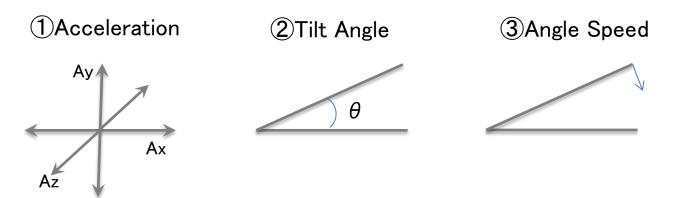

High Stability

M-A351 is equipped with a crystal element using micro-fabrication technology of high precision quartz material to enable customer to measure acceleration, tilt angle, or tilt angle speed with high stability. This is an ideal sensor for analysis and diagnosis of large-sized structures that need to capture small changes because of its inherent ability to capture highly stable measurements over a long period of time.

Low Noise and High Resolution


M-A351 outputs digital 32bit data on each X/Y/Z axis with a resolution of 0.06uG/LSB. This accelerometer can detect slow vibration, small displacement, and high resolution angle and is suitable for structure health monitoring, seismic observation and earthquake detection.

Accelerometer


Noise-Resilience and Direct-Digital-Conversion

M-A351 is a digital-frequency-change-type of Quartz based accelerometer. This accelerometer can output 32bit data (0.06uG/LSB) on each axis without any expensive analog components (such as high fidelity A/D converter) and is resilient to electricity noise problems typically associated with Si-MEMS-type accelerometers.

Acceleration, Tilt Angle, Angle Speed

M-A351 has programmable output selection (Acceleration/Tilt Angle/Angle Speed) for a wide variety of applications and use cases. This digital type of sensor will decrease cost, size, and development schedule.

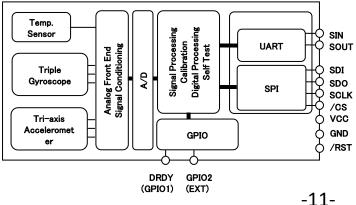
IMU (Inertial Measurement Unit)

High Stability IMU

GENERAL DESCRIPTION

The M-G364 is a small form factor inertial measurement unit (IMU) with 6 degrees of freedom: triaxial angular rates and linear accelerations, and provides high-stability and high-precision measurement capabilities with the use of highprecision compensation technology. A variety of calibration parameters are stored in memory of the IMU, and are automatically reflected in the measurement data being sent to the application after the power of the IMU is turned on. With a general-purpose SPI/UART supported for host communication, the M-G364 reduces technical barriers for users to introduce inertial measurement and minimizes design resources to implement inertial movement analysis and control applications.

The features of the IMU such as high stability, high precision, and small size make it easy to create and differentiate applications in various fields of industrial systems.


FEATURES

•	Small Size, Lightweight	: 24x24x10mm, 10grams
•	Rugged Metal Body / High Vibration Resistance	
•	Low-Noise, High-Stability	
	 Gyro Bias Instability 	: 2.2 deg/hr
	 Angular Random Walk 	: 0.09 deg∕√hr
•	Initial Bias Error	:0.1 deg/s (1 σ)
•	6 Degrees Of Freedom	
	Triple Gyroscopes	: ±100 ∕±200 deg/s *
	Tri-Axis Accelerometer	: ±3 G
•	16/32bit Data Resolution	
•	Digital Serial Interface	: SPI / UART
•	Calibrated Stability (Bias, Scale Factor, Axial Alignment)	
•	Data Output Rate	: to 2,000 Sps
•	External Trigger Input / External Counter Reset Input	
•	Delta Angle/Delta Velocity Output	
•	Calibration & Operating Temperature Range	: -40°C to +85°C
•	Single Voltage Supply	: 3.3 V
•	Low Power Consumption	: 18mA (Typ.)
	(*The gyro dynamic range is determined by part number order	ring code)

APPLICATIONS

- Antenna and Platform Stabilization
- **Camera Gimbals**
- Motion Analysis and Control
- Navigation Systems
- Vibration Control and Stabilization
- **Pointing and Tracking Systems**

FUNCTIONAL BLOCK DIAGRAM

High Stability IMU

SENSOR SECTION SPECIFICATION

 T_A =25° C, VCC=3.3V, angular rate=0 deg/s, $\leq \pm 1$ G, unless otherwise noted.

Parameter	Test Conditions / Comments	Min.	Тур.	Max.	Unit
GYRO SENSOR					
Sensitivity					
Dynamic Range *3	-	-	±100 ∕±200	-	deg/s
Scale Factor *3	16bit	Тур-0.2%	0.00375 /0.0075	Typ+0.2%	(deg/s)/LSB
Temperature Coefficient	1 σ, −40°C ≤ T _A ≤ +85°C	-	15	-	ppm/°C
Nonlinearity	1 σ, Best fit straight line	_	0.05	-	% of FS
Misalignment	1 σ, Axis-to-axis, Δ = 90° ideal	-	0.02	_	deg
Bias					
Initial Error	1 σ, −40°C ≤ T _A ≤ +85°C	-	0.1	-	deg/s
Temperature Coefficient (Linear approximation)	1 σ, −40°C ≤ T _A ≤ +85°C	-	0.0005	-	(deg/s)/°C
In-Run Bias Stability	Average		2.2		deg/hr
Angular Random Walk	Average	-	0.09	-	deg/Vhr
Linear Acceleration Effect	Average		0.005		(deg/s)/G
Noise					
Noise Density	Average , f = 10 to 20 Hz	-	0.002	-	(deg/s)/√Hz , rms
Frequency Property					
3 dB Bandwidth	-	-	200	-	Hz
ACCELEROMETERS					
Sensitivity					
Dynamic Range	-	±3	-	-	G
Scale Factor	16bit	Тур-0.2%	0.125	Тур+0.2%	mG/LSB
Temperature Coefficient	1σ, −40°C ≤ T _A ≤ +85°C	-	15	-	ppm/°C
Nonlinearity	1 σ,≤ 1G, Best fit straight line	-	0.1	-	% of FS
Misalignment	1 σ, Axis-to-axis, Δ = 90° ideal	-	0.01	-	deg
Bias					
Initial Error	1 σ, −40°C ≤ T _A ≤ +85°C	-	5	-	mG
Temperature Coefficient (Linear approximation)	1 σ, −40°C ≤ T _A ≤ +85°C	-	0.02	-	mG/°C
In-Run Bias Stability	Average	-	0.05	-	mG
Velocity Random Walk	Average	-	0.025	-	(m/sec)/ vhr
Noise					
Noise Density	Average, f = 10 to 20 Hz	-	0.06	-	mG/√Hz , rms
Frequency Property					
3 dB Bandwidth	-	-	200	-	Hz
TEMPERATURE SENSOR					
Scale Factor ^{*1,2}	Output = 2634(0x0A4A) @ +25°C	-	-0.0037918	-	°C/LSB

*1) This is a reference value used for internal temperature compensation. We provide no guarantee that the value gives an absolute value of the internal temperature.

*2) This is the temperature scale factor for the upper 16bit (TEMP_HIGH).

*3) The parameter is fixed and determined by part number option selected at the time of order.

Note) The values in the specifications are based on the data calibrated at the factory. The values may change according to the way the product is used. Note) The Typ values in the specifications are average values or 1 σ values.

Note) Unless otherwise noted, the Max / Min values in the specifications are design values or Max / Min values at the factory tests.

IMU M-G354

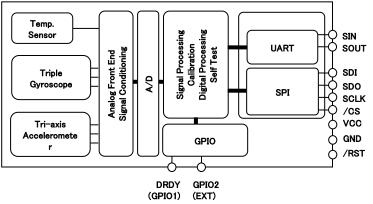
Wide Dynamic Range IMU

■ GENERAL DESCRIPTION

The M-G354 is a small form factor inertial measurement unit (IMU) with 6 degrees of freedom: triaxial angular rates and linear accelerations, and provides high-stability and high-precision measurement capabilities with the use of highprecision compensation technology. A variety of calibration parameters are stored in a memory of the IMU, and are automatically reflected in the measurement data being sent to the application after the power of the IMU is turned on. With a general-purpose SPI/UART supported for host communication, the M-G354 reduces technical barriers for users to introduce inertial measurement and minimizes design resources to implement inertial movement analysis and control applications.

The features of the IMU such as high stability, high precision, and small size make it easy to create and differentiate applications in various fields of industrial systems.

FEATURES


 Small Size, Lightweight 	: 24x24x10mm, 10grams
 Rugged Metal Body / High Vibration Resistance 	
 Low-Noise, High-Stability 	
 Gyro Bias Instability 	: 3 deg/hr
 Angular Random Walk 	: 0.2 deg∕ √hr
• Initial Bias Error	:0.1 deg/s (1 σ)
• 6 Degrees Of Freedom	
 Triple Gyroscopes 	: ±450 deg/s
Tri-Axis Accelerometer	: ±5 G
• 16/32bit Data Resolution	
• Digital Serial Interface	: SPI / UART
• Calibrated Stability (Bias, Scale Factor, Axial Alignment)	
• Data Output Rate	: to 2,000 Sps
• External Trigger Input / External Counter Reset Input	
 Delta Angle/Delta Velocity Output 	
 Calibration & Operating Temperature Range 	: -40°C to +85°C
• Single Voltage Supply	: 3.3 V

• Low Power Consumption

APPLICATIONS

- Antenna and Platform Stabilization
- Camera Gimbals
- Motion Analysis and Control
- Navigation Systems
- Vibration Control and Stabilization
- Pointing and Tracking Systems

■ FUNCTIONAL BLOCK DIAGRAM

: 18mA (Typ.)

Wide Dynamic Range IMU

SENSOR SECTION SPECIFICATION

 T_A =25° C, VCC=3.3V, angular rate=0 deg/s, $\leq \pm 1$ G, unless otherwise noted.

Parameter	Test Conditions / Comments	Min.	Тур.	Max.	Unit
GYRO SENSOR					
Sensitivity					
Dynamic Range	-	-	±450	-	deg/s
Scale Factor	16bit	Тур-0.2%	0.016	Тур+0.2%	(deg/s)/LSB
Temperature Coefficient	1 σ, −40°C ≤ T _A ≤ +85°C	-	15	-	ppm/°C
Nonlinearity	≤±300dps	-	0.05	-	% of FS
Nonlinearity	≥±300dps	Ξ	0.2	2	/00113
Misalignment	1 σ, Axis-to-axis, Δ = 90° ideal	-	0.02	-	deg
Bias					
Initial Error	1 σ, −40°C ≤ T _A ≤ +85°C	-	0.1	-	deg/s
Temperature Coefficient (Linear approximation)	1 σ, −40°C ≤ T _A ≤ +85°C	-	0.0005	-	(deg/s)/°C
In-Run Bias Stability	Average		3		deg/hr
Angular Random Walk	Average	-	0.2	-	deg/Vhr
Linear Acceleration Effect	Average		0.005		(deg/s)/G
Noise					
Noise Density	Average , f = 10 to 20 Hz	-	0.002	-	(deg/s)/√Hz , rms
Frequency Property					
3 dB Bandwidth	-	-	200	-	Hz
ACCELEROMETERS					
Sensitivity					
Dynamic Range	-	±5	-	-	G
Scale Factor	16bit	Typ-0.2%	0.2	Typ+0.2%	mG/LSB
Temperature Coefficient	1σ, −40°C ≤ T _A ≤ +85°C	-	15	-	ppm/°C
Nonlinearity	1 σ,≤ 1G, Best fit straight line	-	0.1	-	% of FS
Misalignment	1 σ, Axis-to-axis, Δ = 90° ideal	-	0.01	-	deg
Bias					
Initial Error	1 σ, −40°C ≤ T _A ≤ +85°C	-	5	-	mG
Temperature Coefficient (Linear approximation)	1 σ, −40°C ≤ T _A ≤ +85°C	-	0.02	-	mG/°C
In-Run Bias Stability	Average	-	0.07	-	mG
Velocity Random Walk	Average	-	0.03	-	(m/sec)/ vhr
Noise					
Noise Density	Average, f = 10 to 20 Hz	-	0.06	-	mG/√Hz , rms
Frequency Property					
3 dB Bandwidth	-	-	200	-	Hz
TEMPERATURE SENSOR					
Scale Factor *1,2	Output = 2634(0x0A4A) @ +25°C	-	-0.0037918	-	°C/LSB

*1) This is a reference value used for internal temperature compensation. We provide no guarantee that the value gives an absolute value of the internal temperature.

*2) This is the temperature scale factor for the upper 16bit (TEMP_HIGH).

Note) The values in the specifications are based on the data calibrated at the factory. The values may change according to the way the product is used. Note) The Typ values in the specifications are average values or 1σ values.

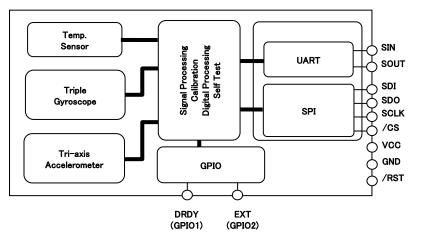
Note) Unless otherwise noted, the Max / Min values in the specifications are design values or Max / Min values at the factory tests.

Small Size and Light Weight IMU

■ GENERAL DESCRIPTION

The M-V340 is a small form factor inertial measurement unit (IMU) with 6 degrees of freedom: triaxial angular rates and linear accelerations, and provides high-stability and high-precision measurement capabilities with the use of highprecision compensation technology. A variety of calibration parameters are stored in memory of the IMU, and are automatically reflected in the measurement data being sent to the application after the power of the IMU is turned on. With a general-purpose SPI/UART supported for host communication, the M-V340 reduces technical barriers for users to introduce inertial measurement and minimizes design resources to implement inertial movement analysis and control applications.

The features of the IMU such as high stability, high precision, and small size make it easy to create and differentiate applications in various fields of industrial systems.


FEATURES

 Small Size, Lightweight 	: 10x12x4mm, 1gram
 Low-Noise, High-Stability 	
 Gyro Bias Instability 	: 3.5 deg/hr
 Angular Random Walk 	: 0.17 deg∕ √hr
 Initial Bias Error 	:0.5 deg/s (1 σ)
• 6 Degrees Of Freedom	
Triple Gyroscopes	: \pm 450 deg/s
 Tri-Axis Accelerometer 	: ± 5.8 G
 16bit Data Resolution 	
 Digital Serial Interface 	: SPI / UART
• Calibrated Stability (Bias, Scale Factor, Axial Alignment)	
 Data Output Rate 	: to 1,000 Sps
 External Trigger Input / External Counter Reset Input 	
 Calibration & Operating Temperature Range 	: -40°C to +85°C
 Single Voltage Supply 	: 3.3 V
Low Power Consumption	: 16.5mA (Typ.)

APPLICATIONS

- Unmanned Systems
- Motion Analysis and Control
- Navigation Systems
- Vibration Control and Stabilization
- Pointing and Tracking Systems

■ FUNCTIONAL BLOCK DIAGRAM

Small Size and Light Weight IMU

SENSOR SECTION SPECIFICATION

 T_A =25° C, VCC=3.3V, angular rate=0 deg/s, $\leq \pm 1$ G, unless otherwise noted.

Parameter	Test Conditions / Comments	Min.	Тур.	Max.	Unit
GYRO SENSOR					
Sensitivity					
Dynamic Range	-	-	±450	-	deg/s
Sensitivity	-		0.015		(deg/s)/LSB
Temperature Coefficient	1 σ, −40°C ≤ T _A ≤ +85°C	-	10	-	ppm/°C
Nonlingarity	≤±300dps	-	0.1	-	% of FS
Nonlinearity	≥±300dps	_	0.5	_	-% 01 FS
Misalignment	1 σ, Axis-to-axis, $\Delta = 90^{\circ}$ ideal	-	0.1	-	deg
Bias					
Initial Error	1 σ, −40°C ≤ T _A ≤ +85°C	-	0.5	-	deg/s
Temperature Coefficient (Linear approximation)	1 σ, −40°C ≤ T _A ≤ +85°C	-	0.001	-	(deg/s)/°C
In-Run Bias Stability	Average		3.5		deg/hr
Angular Random Walk	Average	-	0.17	-	deg/vhr
Linear Acceleration Effect	Average		0.01		(deg/s)/G
Noise					
Noise Density	Average , f = 10 to 20 Hz	-	0.0025	-	(deg/s)/VHz , rms
Frequency Property					
3 dB Bandwidth	-	-	200	-	Hz
ACCELEROMETERS					
Sensitivity					
Dynamic Range	-	±5.8	-	-	G
Scale Factor	16bit		0.18		mG/LSB
Temperature Coefficient	1σ, −40°C ≤ T _A ≤ +85°C	-	35	-	ppm/°C
Nonlinearity	1 σ,≤ 1G, Best fit straight line	-	1	-	% of FS
Misalignment	1 σ, Axis-to-axis, Δ = 90° ideal	-	0.2	-	deg
Bias					
Initial Error	1 σ, −40°C ≤ T _A ≤ +85°C	-	8	-	mG
Temperature Coefficient (Linear approximation)	1 σ, −40°C ≤ T _A ≤ +85°C	-	0.1	-	mG/°C
In-Run Bias Stability	Average	-	0.05	-	mG
Velocity Random Walk	Average	-	0.15	-	(m/sec)/ vhr
Noise					
Noise Density	Average, f = 10 to 20 Hz	-	0.25	-	mG/√Hz , rms
Frequency Property					
3 dB Bandwidth	-	-	200	-	Hz
TEMPERATURE SENSOR					
Scale Factor *1,2	Output = 1469 @ +25°C	-	-0.0053964	-	°C/LSB

^{*1)} This is a reference value used for internal temperature compensation. We provide no guarantee that the value gives an absolute value of the internal temperature.

^{*2)} This is the temperature scale factor for the upper 16bit (TEMP_HIGH).

Note) The values in the specifications are based on the data calibrated at the factory. The values may change according to the way the product is used. Note) The Typ values in the specifications are average values or 1σ values.

Note) Unless otherwise noted, the Max / Min values in the specifications are design values or Max / Min values at the factory tests.

IMU M-G550PC2

CAN Interface & Waterproof IMU

■ GENERAL DESCRIPTION

The M-G550PC2 is a small form factor inertial measurement unit (IMU) with 6 degrees of freedom: tri-axial angular rates and linear accelerations, and provides high-stability and high-precision measurement capabilities with the use of high-precision compensation technology. A variety of calibration parameters are stored in memory of the IMU, and are automatically reflected in the measurement data being sent to the application after the power of the IMU is turned on. With Controller Area Network (CAN) interface support for host communication, the M-G550PC2 reduces technical barriers for users to introduce inertial measurement and minimizes design resources to implement inertial movement analysis and control applications.

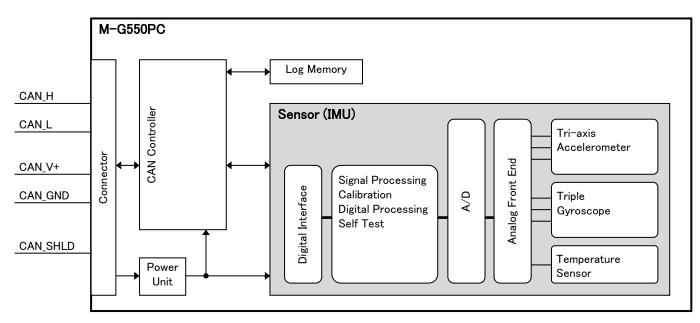
This unit is packaged in a water-proof and dust-proof metallic case. It is suitable for use in industrial and heavy duty applications. The features of the IMU such as high stability, high precision, and small size make it easy to create and differentiate applications in various fields of industrial systems.

FEATURES

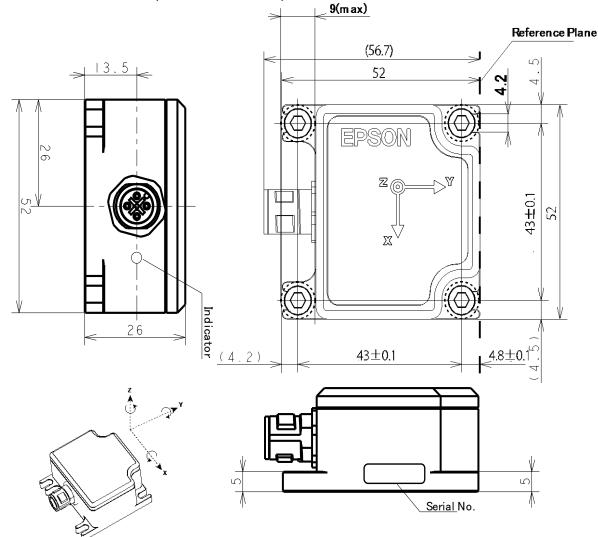
- Size, Weight
- Water Proof and Dust Proof
- Low-Noise, High-Stability
 - Gyro Bias Instability
 - Angular Random Walk
- Initial Bias Error
- 6 Degrees Of Freedom
 - Triple Gyroscopes
 - Tri-Axis Accelerometer
- 16bit Data Resolution
- Interface
- Bit Rate
- Node-IDCalibrate
- Calibrated Stability (Bias, Scale Factor, Axial Alignment)
- Sampling Rate
- Data Logging
- Operating Temperature Range
- Single Voltage Supply
- Low Power Consumption

APPLICATIONS

- Motion and Vibration Measurement
- Platform Stabilization
- Attitude Detection for Unmanned Systems
- Vibration Control and Stabilization


: 52x52x26mm, 81grams : IP67

- : 3.5 deg/hr : 0.1 deg/ √hr : 0.5 deg/s (1σ)
- $\pm 150 \text{ deg/s}$ $\pm 5 \text{ G}$
- : CANopen (ISO11898-2, High speed CAN)
- : 10k to 1M bps (Selectable)
- : 1 to 127
- : to 1,000 Sps
- : 1,048,560 data samples
- : –40°C to +70°C
- (without mechanical actuation)
- : 9 to 30V
- : 26.5mA (Typ.) @Vin = 12V



CAN Interface & Waterproof IMU

■ FUNCTIONAL BLOCK DIAGRAM

■ OUTLINE DIMENSION(unit: millimeters)

Accelerometer

Accelerometer M-A351AS/AU

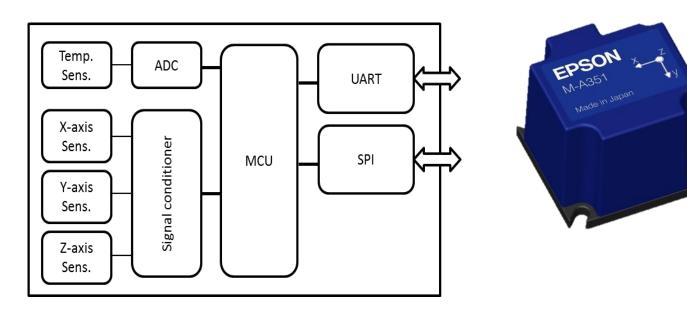
High Precision 3axis Accelerometer

■ GENERAL DESCRIPTION

Accelerometer M-A351 (vibration and inclination) series is a wideband model with wider measurement bandwidth capability. The M-A351 series enables measurement bandwidths of up to 100Hz, and an increased data output rate of up to 1,000Sps. Moreover, the measurement resolution is improved to 0.06uG/LSB, and the output mode of each acceleration axis can be selected from acceleration/tilt angle/tilt angle speed. A highly accurate and stable three axis accelerometer equipped with detection elements made from quartz crystal micro-fabrication technology and wide temperature range by incorporating built-in temperature compensation technology.

Using the M-A351 series with the latest generation technology eliminates the need for costly components such as high fidelity AD converters, analog accelerometers, and noise/wiring challenges associated with legacy analog systems. The highly integrated M-A351 series with serial digital output (SPI or UART) simplifies the design of high performance measurement systems by reducing the overall system cost, weight, and power consumption.

The M-A351 series accelerometer facilitates the differentiation and development of new applications in the various fields of industrial systems.


FEATURES

•	Small Size and Lightweight	: 24x24x19mm, 12grams
•	Low Noise	: 0.5 uG/ $$ Hz (Average)
•	High Resolution	: 0.06 uG/LSB
•	Wide Bandwidth	: 100 Hz (selectable)
•	Output Rate	: SPI 500 Sps / UART 1,000 Sps (Max., selectable)
•	Three Axis Accelerometer	: ±5 G
•	Digital Serial Interface	: SPI (M–A351AS) / UART (M–A351AU)
•	Wide Operating Temperature Range	: −20° C to +85° C
•	Low Voltage Supply	: 3.3 V
•	Low Power Consumption	: 66mW
•	Output Mode Selection (each axis)	: Acceleration, Tilt Angle, or Tilt Angle Speed

APPLICATIONS

- Building and Structural Health Monitor
- Seismic Observation
- Earthquake Detection

FUNCTIONAL BLOCK DIAGRAM

Accelerometer M-A351AS/AU

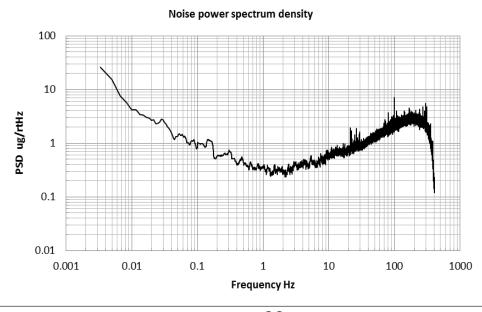
High Precision 3axis Accelerometer

SENSOR SECTION SPECIFICATION

Parameter	Test Conditions / Comments	Spec.	Unit
Acceleration Output Data Type	•		
Input Range (*1)	Reduced accuracy operating range	+/-5	G
Input Range (*2)	Accuracy guaranteed by specification	+/-1	G
Null Offset	T _A =25°C	+/-4	mG
Null Offset Repeatability	T _A =25°C and VCC=3.3V for one year after shipment	3	mG
Null Offset Temperature Variation	-20°C to +85°C	+/-4	mG
Noice Density	T _A =25°C,average 0.5Hz to 6Hz,horizontal (+/- 5deg.)	0.5	µGrms/√Hz
Noise Density	T _A =25°C,peak 0.5Hz to 100Hz,horizontal (+/- 5deg.)	60	µGrms/√Hz
Resolution	UART/SPI (Binary)	0.06	µG/LSB
Tilt Angle Output Data Type (*3)			
Input Range	Accuracy guaranteed by specification	+/-0.785	rad
Null Offset Repeatability	T _A =25°C and VCC=3.3V for one year after shipment	+/-3.491	mrad
Resolution	UART/SPI (Binary)	0.002	µrad/LSB
Tilt Angle Speed Output Data Type (*	4)		
Calculating Range	Unit per millisecond of measurement trigger	+/-2.094	rad/ms
Resolution	UART/SPI (Binary)	2	(µrad/s)/LS B
Common			
Filter Bandwidth (*5)	Selectable with command	5,10,20,50,100	Hz
Data Quitaut Data (*E)	UART, Selectable with command	Up to 1000	Sps
Data Output Rate (*5)	SPI, Selectable with command	Up to 500	Sps
Power Supply Voltage	T _A =25°C	3.3	V
Consumption Current	Measurement mode, T _A =25°C	20	mA
	· · · · · · · · · · · · · · · · · · ·		

 $T_A = -20^{\circ}$ C to +85° C, VCC=3.15V to 3.45V, ±1G, unless otherwise noted.

*1 The range from above ± 1 G to ± 5 G is outside the guaranteed accuracy specifications.


*2 The calibrated standard 1G gravitational acceleration value is 9.80665 m/s².

*3 Tilt angle is internally calculated from the gravitational acceleration.

*4 Tilt angle speed = delta tilt angle / data rate.

*5 The output data rate and internal filter bandwidth is selectable by the command.

■ TYPICAL PERFORMANCE CHARACTERISTICS

Accelerometer M-A550AC2

CAN Interface & Waterproof

■ GENERAL DESCRIPTION

The M-A550AC2 is a high accuracy and high stability 3 axis accelerometer. This sensor unit is based on Quartz technology for high accuracy, high stability, small size, and low power consumption. This sensor unit enables wide dynamic range acceleration and vibration sensing. Acceleration and tilt angle is available as user selectable output measurement options. This sensor unit uses the latest technology to improve performance and offer wider sensing bandwidth. With Controller Area Network (CAN) interface supported for host communication, the M-A550AC reduces technical barriers for users to incorporate seismic and vibration sensing, and minimizes design resources to implement control and monitoring applications. This unit is packaged in a water-proof and dust-proof metallic case making it suitable for use in industrial and heavy duty applications.

The features of the sensor unit such as high stability, high precision, and small size make it easy to create and differentiate applications in various fields of industrial systems.

: M-A351

: 50 Hz

: 1 to 127

:9 to 30V

: 0.06 uG/LSB

: IP67 Equivalent

: 500 Sps (selectable)

 $:-20^{\circ}$ C to $+70^{\circ}$ C

: 24mA (Typ.) @Vin = 12V

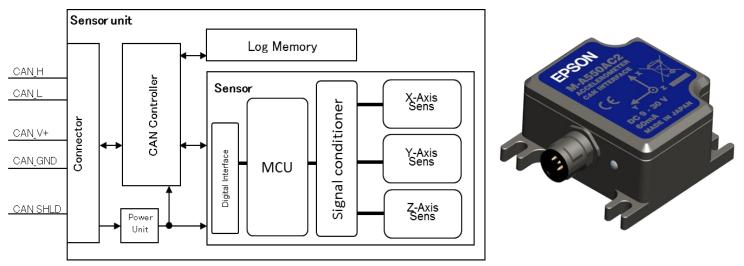
: 52x52x26mm, 81grams

 $\pm 5 \text{ G}$ (Accuracy range $\pm 1 \text{ G}$)

: CANopen (ISO11898-2 High speed CAN)

■ FEATURES

- Integrated Sensor
- Size and Weight
 - High Resolution
- Wide Bandwidth
- Three Axis Accelerometer
- Digital Serial Interface
- Water and Dust Proof
- Output Rate
- Node-ID
- Operating Temperature Range
- Single Voltage Supply
- Low Power Consumption


• Calibrated Stability (Bias, Scale Factor, Axial Alignment)

Data Logging Function

APPLICATIONS

- Building and Structural Health Monitor
- Seismic Observation
- Earthquake Detection

FUNCTIONAL BLOCK DIAGRAM

Accelerometer M-A550AC2

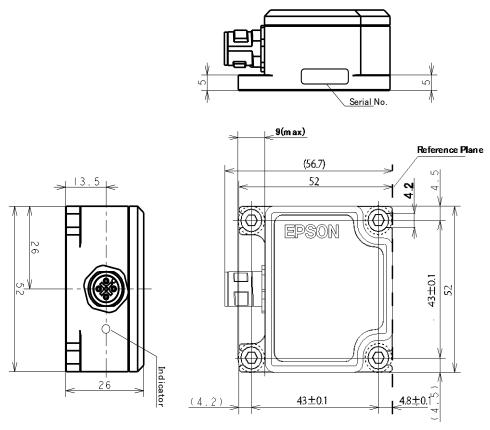
CAN Interface & Waterproof

CABLE LENGTH

CAN bitrate	Total Cable Length
1000kbps	40m
500kbps	100m
250kbps	250m
125kbps	500m

■ CONNECTOR PIN LAYOUT AND FUNCTIONS

Model Number	SACC-DSI-MS-5CON-M12-SCO SH	
Manufacturer	PHOENIX CONTACT	



No	Pin Name	I/O	Description
1	CAN_SHLD	-	CAN Shield ^(*1)
2	CAN_V+	I	external power supply (9-30V)
3	CAN_GND	-	Ground
4	CAN_H	I/O	CAN H bus line
5	CAN_L	I/O	CAN L bus line

Note: This unit should be connected to a connector that satisfies at least the IP67 water and dust proof specification.

 ± 1 CAN_SHLD is connected to the case. CAN_SHLD is internally connected to CAN_GND via a capacitor 0.01uF/100V.

■ OUTLINE DIMENSION(unit: millimeters)

Accelerometer M-A550AR2

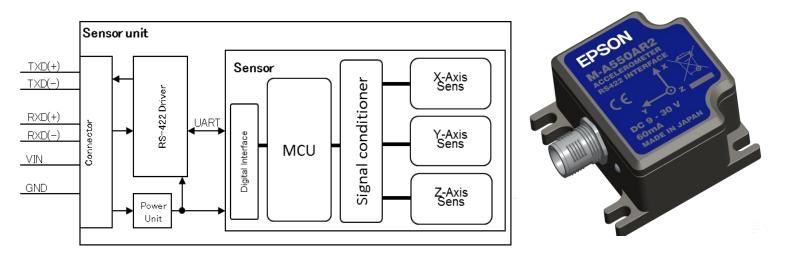
RS422 Interface & Waterproof

■ GENERAL DESCRIPTION

The M-A550AR2 is a high accuracy and high stability 3 axis accelerometer. This sensor unit is based on Quartz technology for high accuracy, high stability, small size, and low power consumption. This sensor unit enables wide dynamic range acceleration and vibration sensing. Acceleration, tilt angle and tilt angular velocity is available as user selectable output measurement options. This sensor unit uses the latest technology to improve performance and offer wider sensing bandwidth. With RS422 interface supported for host communication, the M-A550AR2x reduces technical barriers for users to incorporate seismic and vibration sensing, and minimizes design resources to implement control and monitoring applications. This unit is packaged in a water-proof and dust-proof metallic case making it suitable for use in industrial and heavy duty applications.

The features of the sensor unit such as high stability, high precision, and small size make it easy to create and differentiate applications in various fields of industrial systems.

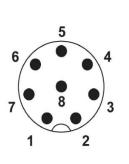
■ FEATURES


	FLATURES	
•	Integrated Sensor	: M-A351
•	Size and Weight	: 52x52x26mm, 81grams
•	High Resolution	: 0.06 uG/LSB
•	Wide Bandwidth	: 50 Hz
•	Three Axis Accelerometer	: ± 5 G (Accuracy range ± 1 G)
•	Digital Serial Interface	: RS422
•	Water and Dust Proof	: IP67 Equivalent
•	Output Rate	: 500 Sps (selectable)
•	Cable Length	: 250 m(max)
•	Operating Temperature Range	$:-20^{\circ}$ C to $+70^{\circ}$ C
•	Single Voltage Supply	: 9 to 30V
•	Low Power Consumption	: 16mA (Typ.) @Vin = 12V
	Collibrated Stability (Pipe Scale Feater /	Vial Alignment)

• Calibrated Stability (Bias, Scale Factor, Axial Alignment)

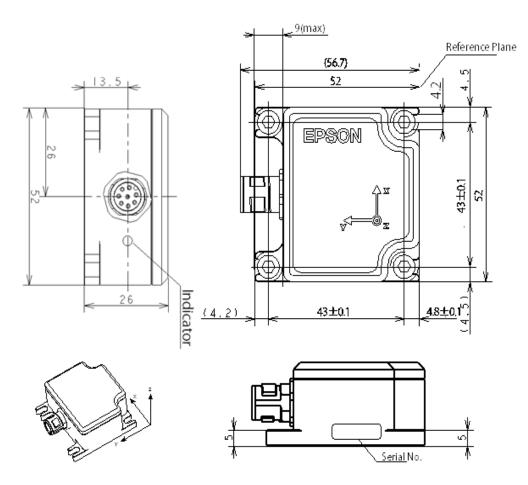
APPLICATIONS

- Building and Structural Health Monitor
- Seismic Observation
- Earthquake Detection

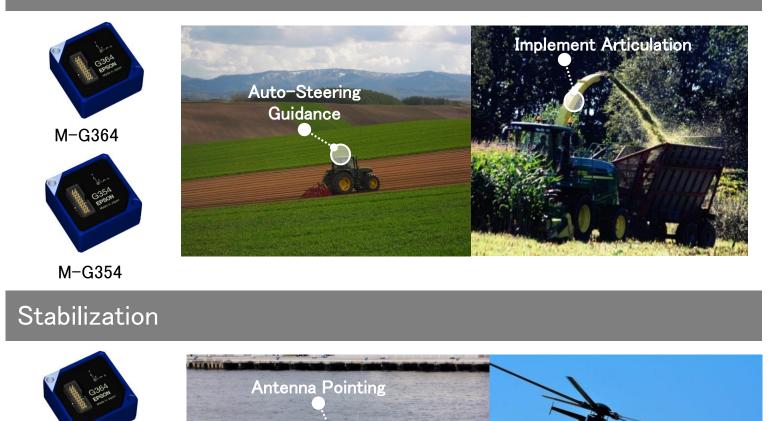

FUNCTIONAL BLOCK DIAGRAM

Accelerometer M-A550AR2

RS422 Interface & Waterproof


■ CONNECTOR PIN LAYOUT AND FUNCTIONS

Mode	l Number	SACC-DSI-MS-8CON-M12-SCO SH	
Manufacturer		PHOENIX CONTACT	
Pin No.	Mnemonic	Type ^{*1} Description	
1	NC	N/A	Do Not Connect
2	VIN	S	Power Supply (9-30V)
3	GND	S	0V
4	TD-	0	Transmit Data (-)
5	RD+	I Received Data (+)	
6	TD+	O Transmit Data (+)	
7	NC	N/A Do Not Connect	
8	RD-	I Received Data (-)	


*1) Pin Type $\,$ I :Input, O :Output, I/O :Input/Output, S :Supply, N/A :Not Applicable

■ OUTLINE DIMENSION(unit: millimeters)

IMU Application Examples

Precision Agriculture

Construction and Mining Machine Control

M-G364

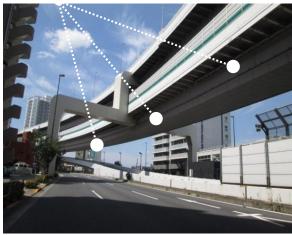
M-V340

M-G550

Optical Stabilization

Accelerometer Application Examples

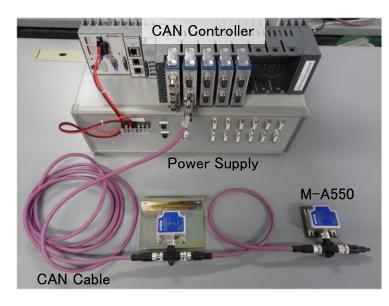
Structure Health Monitoring (SHM)

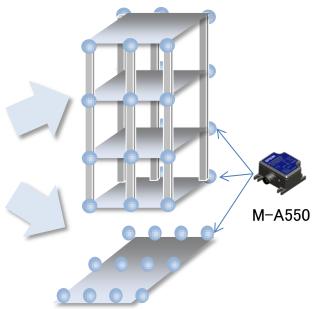


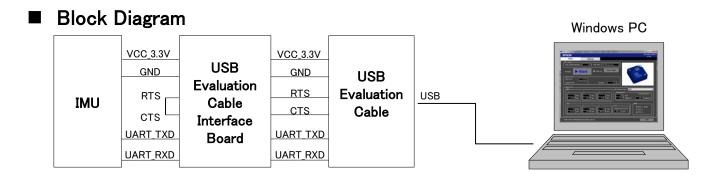
M-A351

M-A550

Bridge Monitoring




Building and Earthquake Monitoring, Maintenance


Multi-sensor Measurement System with CAN Interface

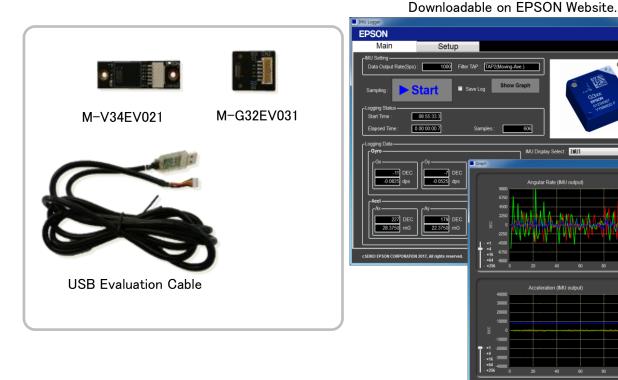
Evaluation Kit

This USB Evaluation Cable Interface Board enables a PC to control the Epson IMU and Accelerometer via USB interface when used with the USB Evaluation Cable and boards. The USB evaluation tools simplify the initial evaluation and rapid testing of the Epson IMU and Accelerometer products. The power is supplied from USB power.

Logger software for Windows

G364PDC0

t: <u>IMU1 -</u> 1.3050 dps 🔵


0.2250 dps

26.25 d

1001.0531 mg -85.3750 mg 42.5000 mg 996.5000 mg GPIO • GPIO 1/DRDY • GPIO 2

Gx

USB Evaluation Kit

Combination Table

Usage	USB Evaluation Cable	Evaluation board	Products
Data logger on PC	M-C30EV041	M-G32EV031	M-G354PD M-G364PDC0 M-G364PDCA
		M-V34EV021	M-V340PD
	M-C30EV141		M-A351AU
Built in customer board		M-G32EV031	M-G354PD M-G364PDC0 M-G364PDCA
		M-V34EV011	M-V340PD

Global Network

In order to understand the customer needs around the world and respond quickly, we are expanding our bases globally and providing services closely to customers.

NORTH AMERICA

EPSON ELECTRONICS AMERICA, INC.

http://www.eea.epson.com/

214 Devcon Drive, San Jose, CA 95112, U.S.A. TEL +1-800-228-3964 FAX +1-408-922-0238

EUROPE

EPSON EUROPE ELECTRONICS GmbH http://www.epson-electronics.de/ Riesstrasse 15, 80992 Munich, Germany

TEL +49-89-14005-0 FAX +49-89-14005-110

JAPAN and OTHER AREA

SEIKO EPSON COPORATION MSM BUSINESS PROJECT

281 Fujimi, Fujimi-machi, Suwa-gun, Nagano-ken 399-0293 JAPAN TEL: +81-266-61-0614, FAX:+81-266-61-2051

421–8 Hino, Hino-shi, Tokyo 191–8501 JAPAN TEL: +81–42–510–5775, FAX:+81–42–587–5116

Midosuji GranTower 15F, 3–5–1 Bakuro-machi, Chuo-ku, Osaka-shi, Osaka 541–0059, Japan TEL:+81–6–6120–6000, FAX: +81–6–6120–6110

PRODUCT WEBSITE

For further information about our products. Please visit our Website.ENGLISH:http://global.epson.com/products_and_drivers/sensing_system/JAPANESE:http://www.epson.jp/prod/sensing_system/

2017.07